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Executive Summary 

Researchers at the Georgia Tech Research Institute (GTRI) developed and tested a portable 

pedestrian detection system for characterizing pedestrian behavior at both midblock and 

intersection locations throughout the state of Georgia.  The system consists of a trailer with four 

high-resolution pan-tilt cameras and a suite of software for collecting video data, processing the 

video to detect pedestrians and track trajectories, and generate reports based on the tracked 

results.   

Under previous efforts, three software tools were developed:  a program to enable video 

recording and saving; a video analysis tool to allow preparation of video for processing and 

generating pedestrian trajectory data that is logged to a local database; and a reporting tool that 

allows for generation of reports and analysis of pedestrian crossing behavior for particular time 

periods.  Results from the report generation tool include a visualization of the pedestrian 

crossings for the user-defined time period to allow for analysis. 

Several new tools were developed under the scope of this project to assist in higher-value analysis 

and decision making.  These tools consisted of a software program to view pedestrian crossings in 

video using data generated by the report generation tool and a tool to analyze trajectory data and 

perform incident detection with the goal of developing a “safety” metric.  The video playback 

tool was also modified to allow viewing of potential conflicts in video using data generated from 

the conflict analysis tool. 

In addition to detecting and tracking pedestrians, the system was improved to allow detection and 

tracking of vehicles and cyclists.  This required a major overhaul and development of a 

completely new detection and tracking system.  This new system not only improved capabilities 

of the system, it also significantly improved processing time and reduced detection errors.  



2 
 

Average detection accuracy for pedestrians, vehicles, and cyclists hovers at approximately 95%.  

However, related counts as generated by the report generation tool have an accuracy of 

approximately 53%.    The potential to detect and place trajectories in a geo-spatial frame was 

also explored.  The team demonstrated the ability to place trajectories in a geo-spatial frame when 

the geography is very flat and planar, but identified issues with complex scenes. 

The research team identified areas of potential improvement to add value to the data collected as 

well as to improve tracker performance.  These include but are not limited to: advanced report 

generation algorithms that allow more robust combining of single pedestrians that due to busy 

scenes or occlusions are tracked and logged as multiple pedestrians; and development of methods 

to map undulating geographies to two-dimensional video data for estimating physical location in 

geo-spatial coordinates for complex scenes. 

The result of the project is an operational field-tested prototype system that can be utilized by the 

GDOT to perform detailed analysis of pedestrian, cyclist, and vehicle behavior and interactions in 

complex scenes.  The trailer-mounted video system allows quick deployment and ability to 

capture video from locations that may not have current video coverage.  The software also allows 

for processing of video streams from several different sources, in addition to the trailer-mounted 

recording system.  The suite of tools allows for in-depth analysis and validation of the system 

operation. 
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Introduction 

Pedestrians involved in roadway accidents account for nearly 12% of all traffic fatalities and 

59,000 injuries each year [1].  Most injuries occur when pedestrians attempt to cross roads, and 

there have been noted differences in accident rates midblock vs. at intersections [2], [3].  

Additionally, vehicle-pedestrian collisions at midblock also tend to be more deadly for 

pedestrians [2]. This is of significant concern to the Georgia Department of Transportation 

(GDOT) which is being proactive in exploring various approaches to increasing pedestrian safety 

[4]. 

Pedestrian behavior at midblock crossings in the metro Atlanta area is largely unknown.  This 

leads to a lack of information to guide the proper design of lane markings and traffic signals to 

enhance pedestrian safety.   The problem stems from observations that “…When convenient and 

manageable crossing points are not identified, most pedestrians cross at random, unpredictable 

locations. In making random crossings, they create confusion and add risk to themselves and 

drivers…” [5]. Techniques for enhancing pedestrian safety are well known [1], [6]; however, 

what is lacking are data to support the choice and location of countermeasures at a local level. 

The current practice of collecting data on pedestrian behavior is a time-consuming manual 

process that is prone to error as well as limited in function.  To address this, the Georgia Tech 

Research Institute (GTRI) developed and delivered to the Georgia Department of Transportation 

(GDOT) a state-of-the-art prototype automated system that uses video feeds to count pedestrians 

and cyclists crossing specifically at midblock locations on roads.  Results from field testing 

indicate that the system has an average pedestrian detection rate greater than 90% with very low 

false positives (<5%) in midblock locations.  A suite of software tools allows for processing of 

the video along with visualization and reporting of pedestrian counts and frequencies.   
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Operating the system in locations other than a midblock (such as in an intersection) had less than 

desirable operation of the detection system.  In addition, through development and demonstration 

of the system, both the research team and GDOT personnel identified several areas where the 

system could be improved to potentially provide significantly higher value data. 

The objective of this work was to support the GDOT in an extensive field test of the 

aforementioned system and to improve its current capabilities from both a user interface and a 

processing perspective. GTRI processed and generated several reports with the system, all while 

improving the system algorithms and operation. The system was modified and tested to operate in 

non-midblock locations such as intersections and other pedestrian heavy locations.  During this 

time, additional tools for data analysis and report generation were also developed and tested with 

input from the GDOT.   
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Objectives/Tasks  

The objective of this project was to perform field testing and enhance the capabilities of a 

portable automated system to collect continuous video data on pedestrian and cyclist behavior at 

various locations throughout the metro Atlanta area.  The previous system analyzes collected 

video data to automatically identify and characterize the number of pedestrians and their behavior 

at midblock locations (specifically, their crossing locations and frequency).  Enhancements 

included modifying the pedestrian tracking algorithms to allow for operation in places other than 

midblock locations, exploring the ability to log pedestrian trajectories in a GIS system using GPS 

coordinates, and adding vehicle tracking capabilities to the system.   

The following tasks were executed by GTRI to achieve the specific objectives: 

1. Assist GDOT in processing and generating reports.  

2. Improve reporting system capabilities.  

 

a. Add ability to view pedestrian crossings in video immediately using 

detection database. 

b. Refine the user interface based on feedback provided from GDOT.  

 

c. Explore the ability and accuracy for the system to identify cyclists and 

pedestrians separately (current system identifies, but does not specify). 

d. Explore the ability to determine GPS coordinates of crossings to allow data 

to be plotted in a GIS system. 

e. Make further improvements to system processing time. 

f. Improve and characterize system ability to track pedestrians in intersections. 

g. Add and evaluate vehicle tracking abilities. 

3. Explore data processing with different video sources. 
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4. Evaluate the ability to automatically perform incident detection or generate a 

“danger/safety” metric based on vehicle and pedestrian interactions. 

5. Improve trailer hardware system. 

6. Perform training and demonstration of the system for GDOT personnel. 

The following sections of this report describe in detail the work completed for each of the tasks 

listed directly above. 
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1) Assist GDOT in processing and generating reports 

The original intent of this task was to operate the video capture trailer system with GDOT 

personnel to generate reports utilizing the pedestrian tracking software.  Early in the project, the 

State Bicycle and Pedestrian Engineer moved into another position at the GDOT.  When the 

replacement arrived several months into the project, work was well underway implementing the 

new tracker capabilities discussed in this report.  Due to the timing of this, it was determined that 

efforts would be best spent operating the system and testing/validating the new tracker 

performance; therefore, no official reports were generated at the behest of the GDOT. 

However, the trailer-mounted recording system was deployed at several locations around Georgia 

Tech and the City of Atlanta during development of the project.  Sites included routes along 

Techway on campus, as well as several locations along pedestrian and vehicle routes.  In addition, 

as part of task 2f, video from several GDOT cameras located around downtown Atlanta was 

processed.  Results from these analyses are presented in the associated sections. 

Three sites, containing six potential locations for deploying the trailer system and field testing the 

new algorithms, specifically for development of the “danger/safety” metric (task 4) were 

provided by Jack Anninos and David Adams of GDOT in January 2019.  The sites include 

locations that have high concentrations of pedestrian incidents.   

Site visits to each of the proposed locations for data collection with the trailer were performed.  

The goal of the site visits was to identify potential areas for placing the trailer system.  This 

requires a significant shoulder or sidewalk space to allow pedestrians to still be able to move 

safely around the system.  In some areas, there was not a suitable location found for placing the 

trailer, unless it is placed in a parking lot or in a turning center lane.    The proposed locations and 

potential trailer placement are shown in the images below (Figure 1-3). 
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Figure 1 - Site 1 

 

Figure 2 – Site 2 
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Figure 3 – Site 3 

Due to timing and construction along some of the proposed routes, two of the six locations were 

available for data collection and testing with the trailer.  The locations with collected data include 

the intersection of Joseph E. Lowery and L.E. Boone, and the intersection of Joseph E. Lowery 

and Martin Luther King shown above in Figure 3.   
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2) Improve reporting system capabilities 

The vast majority of work on this project consisted of designing and implementing a new 

software system capable of detecting and tracking pedestrians, cyclists, and vehicles 

simultaneously.  Unfortunately, the commercial tracking solution used previously was unable to 

meet the requirements, as it had no ability to track cyclists, and performance was very slow.  

Further justification for moving to a new detector/tracker is provided in detail in the following 

sections.   

Detector and Tracker Selection 

In the first quarter of 2019, several different deep neural networks were evaluated in detail.  

These included Resnet50 [7], Resnet101 [7], Yolov3 [8], and Detectron Mask R-CNN [9].  At the 

end of the evaluation, Yolov3 was chosen as the network that contained the best balance between 

performance and processing requirements.  The following sections summarize a technical 

document generated detailing the final implementation of the detection network and the 

associated tracking algorithms in order to track pedestrians, cyclists, and vehicles.   

Yolov3 Finalization 

Yolov3 trained on COCO dataset (80 classes) was the preferred neural network selected based on 

the evaluation. The performance was not as good as the heaviest Detectron Mask R-CNN in terms 

of precision, but the run times were more favorable for equivalently sized networks. Also, the 

neural network part of Yolov3 was more readily optimizable for faster run times. That is, Mask 

R-CNN has some components which are not easily parallelizable, especially on a GPU, leading to 

longer processing times.  Figure 4 Illustrates the processing time of various networks that were 

tested including the original commercial (SLR) solution used in the previous system. 
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Figure 4 - Average Inference Time Comparison for Multiple Detectors 

Explore Use of TensorRT 

TensorRT [10] is an SDK provided by NVIDIA that allows running of deep neural networks on 

NVIDIA GPUs with device-specific optimization. That means, once a deep neural network (here 

Yolov3) is realized in TensorRT, it could then run on different NVIDIA GPUs and take 

advantage of some hardware, for instance, Tensor Cores on the newer GPUs for performing high-

speed mixed precision compute, whereas GPUs that do not support this could still take advantage 

of other optimizations provided directly by NVIDIA. Our initial evaluations showed that Yolov3 

at a resolution of 608x608 ran almost double the speed – ~35 ms/per frame, compared to ~65 

ms/per frame with the latter running on NVIDIA GPUs with CUDA and CUDNN enabled. 

Training Yolov3 

Yolov3 training was evaluated starting with a pre-trained backbone darknet-53 (trained on 

imagenet), at higher resolutions than default resolutions, with COCO 2014 dataset [11]. Only 

image classes pertinent to pedestrians, two wheelers, and four wheelers were used. Training took 

approximately 4-5 days each. The performance of the newly trained network was close to 
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publicly available weights in terms of detecting objects, but the object confidences were not very 

good. Longer training could solve this problem. However, it was realized that evaluating the 

detector for 80 classes was not too different than evaluating for three classes since most of the last 

part of detection can be optimized for parallel computing on a CPU. A 1-2 millisecond difference 

was observed. Given this, the publicly available Yolov3 weights were used, but the realizations 

were changed with different network resolutions when operating in TensorRT. 

Tracker Evaluations 

While several tracking strategies were evaluated, a traditional tracking-by-detection paradigm is 

used. That is, the detector provides high-quality detections of pedestrians and vehicles, and then 

the tracker arranges them into coherent trajectories of subsequent bounding boxes. 

The backbone of the tracker is a common Kalman filtering framework [12], preceded by an 

efficient linear assignment optimization to assign new detected bounding boxes to tracked 

bounding boxes based on Intersection-over-Union (IoU). Following that, trajectories that have 

sufficient confidence (Mahalanobis distance of differences of state variables) are retained. In case 

of pedestrians, additionally, a deep neural network [13] is used to reevaluate detected 

associations, in case pedestrians get blocked briefly by vehicles or a group of people are moving 

together having bounding boxes very close to each other. 

Detector and Tracker Implementation 

After evaluation and selection of the detector and tracker components, the software system was 

designed and implemented as detailed below. 

Overview of “Multimon” (multiple tracker) 

The whole pipeline is designed to be a replacement for the previous commercial tracker, but with 

additional capabilities. So, in that sense, it takes in similar inputs – series of images – and outputs 

trajectories. The outputs are then written to a database for post-processing, such as for analytics. 
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The module is written completely in Python, taking advantage of software and libraries such as 

TensorRT, numpy, scipy, and Tensorflow. 

Detector Sub-module 

The image detector is a Yolov3-based object detector network, completely realized within 

TensorRT. Currently, it is setup to process only one image at a time, but it could be easily setup 

to process several images at once, which takes advantage of further parallelization on a GPU. The 

module expects the deep neural network parameters stored as a weights file (ONNX). The 

weights can be exported at a required configuration and resolution from trained network 

parameters using a script. These ONNX weights are then used to create a TensorRT engine, 

which is custom-built for the specific NVIDIA GPU present on the computer, to take full 

advantage of all available GPU optimizations. If rerunning the network, it can use a cached 

version of the TensorRT engine to save time.  

The detector expects an image, and produces bounding boxes, classes, and their confidences for 

each image. The input image is operated on by several convolutional layers, which produces an 

intermediate dense representation for the entire image. This dense representation is then up-

sampled (with transposed convolution operations) to the input resolution, and at three of the up-

sampled resolutions, the fitnesses for all classes and their bounding boxes are evaluated at each 

location on the up-sampled grid. In other words, the detector operates on the input image at 

effectively three different scales to produce detections. These are then filtered across the scales to 

produce only plausible detections, from each class. 

Tracker Sub-module 

This part is largely based on deepsort [13]. Each type of tracker expects bounding boxes 

corresponding to the type of object it is supposed to track. A Hungarian assignment is done to 

assign incoming bounding boxes to tracked ones. Then, the Kalman filter updates its states 
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corresponding to new detections. Additionally, for the pedestrian tracker, a deep learning-based 

affinity metric is used to identify distinguishing features from new detections in case pedestrian 

detections were lost briefly due to occlusions. Each tracker is individually optimized to parallelize 

on the CPU to obtain better run times, especially when hundreds of objects are present in an 

image. The outputs of each tracker are unique tracking IDs for each new trajectory, along with 

their predicted bounding boxes. 

Configuration Parameters 

The detector and tracker have several configuration parameters that can be changed simply by 

altering a configuration file. Some common configuration parameters are paths to network 

parameter (weights) file, input resolutions, object detector minimum confidence threshold, and 

number of frames to predict bounding box.  A diagram illustrating the process flow of the new 

tracker is provided below (Figure 5). 

 

Figure 5 - Multimon Processing Pipeline 

Performance of the new detector and tracker is detailed in the following sections. 

a) Add ability to view pedestrian crossings in video immediately using 

detection database 
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A stand-alone software tool was developed giving the ability to view pedestrian crossings in 

video data using the detection database.  This was achieved by adding a field to the database to 

track the frame number in each associated video for each pedestrian trajectory.  This also allows a 

user to quickly access still images from the video clips containing pedestrian crossings.  The 

current database layout is shown in Figure 6 below.  As described earlier, a new field was added 

to the Pedestrian Data table (right hand side) that includes the frame number in the video 

containing the crossing data. 

 

Figure 6 - Current Database Tables and Fields 

The new tool allows for immediate viewing of video clips containing pedestrian trajectories 

validated from the report generation tool. Initial attempts were done to navigate to sections of 

video with OpenCV computer vision libraries, but it was found that this operation proved to be 

very slow since OpenCV is not optimized for video viewing. Instead, libVLC (core library behind 

VLC media player) was employed to jump to sections of the video marked by different pedestrian 

crossings. This allows for rapid viewing of video clips containing pedestrian crossings as reported 

by the report generation tool.  This tool allows better evaluation of the accuracy of the system as 

the user can now immediately view the video clips for characterized pedestrian crossings and 

identify issues with false detections (such as with cars).  A screenshot of the playback tool is 

shown in Figure 7. 
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Figure 7 - Screenshot of Video Playback Tool 

This tool allows the user to select the directory containing the video data as it is anticipated that 

the videos may not necessarily be on the same computer as the results generated from the report 

generation tool.  The user then selects the directory associated with the output data from a report 

generated by the report generation tool (containing the report .csv file).  The user can then jump 

through detections in sequence, or select a particular detection given the pedestrian ID if it is 

already known.  

In addition to the video playback tool, modifications were made to the report generation tool to 

display an image from the video data containing the pedestrian crossing for each pedestrian.  The 

previous video tool simply loaded the first frame from the video and overlaid pedestrian 

trajectories.  Now the tool allows for immediate viewing of the actual pedestrian as they are 

crossing in addition to the trajectory overlaid on the image.  This works similar to the video 

playback tool mentioned above, but differs in that it navigates to the part of the video section in 

between a pedestrian crossing and saves an image of this point in video onto a hard disk. To 
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accomplish this task, FFMPEG library is integrated into the report generation software.  Figure 8 

shows one such image as generated and stored by the software. 

 

Figure 8 – Sample Image Generated by Report Generation Tool Containing Trajectory and Pedestrian 

b) Refine the user interface based on feedback provided from GDOT 

Based on feedback provided from GDOT field operators, improvements were made to the video 

recording tool to ensure proper activation of the cameras on the trailer system.  Specific details 

are described in Section 5. 

The system was fully demonstrated to the new pedestrian coordinator at the GDOT in April 2018.  

During this time, the various tools were demonstrated and the report format and visualizations 

were examined.  The current design was deemed acceptable from a usability perspective.   

Minor improvements were made to the video recording tool on the trailer system.  Primarily, this 

consisted of modifying the image views on the display to show the entire field of view of the 

cameras.  Previously, the images presented by the program only showed a portion of each camera 

view.  This allows for immediate validation of the camera field of view before recording is started 

and simplifies the process.  A before and after shot of the user interface is shown in Figure 9.  

Notice the zoom level change from left-to-right.   
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Figure 9 - Before and After User Interface Screenshots 

Due to the significant changes in the tracker that requires a Linux-based (Ubuntu) operating 

system, modifications were made to the processing front-end in the Windows-based program.  

The previous tracker ran in a Windows environment, so the tracker software was developed in a 

Windows dialog-based program.  This program allowed for configuration of the locations and 

initiated the processing engine.  For the most part, the same dialog is used and all the changes to 

the functionality are “hidden” to the user. 

The new operation of the Windows interface allows for the same configuration operations for 

each site, i.e., entering site ID information, comments, and creating optional image masks.  The 

primary change now is that the actual tracker processing is performed on a non-windows system.  

Therefore, the Windows program will initiate processing via passing a message to the Linux-

based processor to initiate operation.  The diagram below (Figure 10) illustrates the new 

configuration at a high level.   
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Figure 10 - Windows User Interface Operation 

Final additions to the interface include more robust status indicators via a status-box, and 

reporting of any processing errors.  In addition, a second option for processing single videos from 

sources other than the trailer-mounted recording system was added.  A screen-shot of the front-

end user interface is provided below (Figure 11).  User manuals for all software tools, including 

this one, are included in Appendix 1. 

 

Figure 11 - New User Interface Screenshot 

c) Explore the ability and accuracy for the system to identify cyclists and 

pedestrians separately 
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Previous data captured from the trailer-mounted video system was exhaustively reviewed to 

extract video of cyclists for processing.  This video was used as the initial input to developing 

approaches for identifying cyclists separate from pedestrians.  The previous operation of the 

system does not discriminate between a cyclist and a pedestrian.  SLR Engineering (commercial 

tracking library) and in-house custom algorithms were explored to enable classification of 

pedestrians and cyclists individually. A sample image of a cyclist captured by the system is 

shown below (Figure 12). 

 

Figure 12 - Sample System Capture of a Cyclist 

Additional cyclist video data was obtained on the Georgia Tech campus for testing of algorithms.  

Figure 13 illustrates a cyclist captured in the data collected on campus and processed with the 

previous commercial tracker.  The blue boxes denote identified pedestrians, showing the cyclist 

detected (as a pedestrian) by the detector.  The yellow lines are their trajectories; gray lines and 

dots are pedestrians that are still being processed for validation.  Unfortunately, the previous 

tracker implementation did not support detection of cyclists.  This was the primary reason for the 

new detection and tracking solution utilizing Yolov3. 
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Figure 13 - Sample Image from Campus Data Collection Containing a Cyclist 

The new Yolov3-based tracker has the ability to independently detect cyclists.  The new detector 

and tracking algorithms described in Section 2 above allow for this capability.  An image of the 

tracker output from an intersection with heavy cyclist activity is shown below (Figure 14-15). 

 

Figure 14 - Cyclist Track Results 
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Figure 15 - Cyclist Tracks from Cyclists Using Vehicle Lanes 

With completion of the new detector, cyclists are identified, but as both a pedestrian and a 

bicycle.  A sample screenshot of cyclists detected as both a pedestrian and a bicycle is shown 

below (Figure 16).  The current solution for this is to remove a pedestrian from the resulting 

count for each cycle that is detected during report generation.   

 

Figure 16 - Cyclists Detected as Both Cyclists and Pedestrians 
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To characterize accuracy of the cyclist detection and tracking algorithms, twenty-eight 30-second 

video clips containing cyclists were randomly selected from the pool of videos collected by the 

system and acquired via the GDOT camera feeds.  Each of these clips contained at least one 

cyclist.  The software was run on the video clips and reports generated.  The system detected 29 

of the 32 cyclists and the report generator counted 37 cyclists.  The discrepancy in the total 

detected and the count was a result of double counting several of the cyclist trajectories.  

Accurate counts for reports are something that needs to be addressed with the current system.  

Table 1 summarizes the detection and tracking accuracy for cyclists. 

Table 1 - Cyclist Detection and Tracking Accuracy 

Ground Truth Detected Detection Accuracy Count Count 

Accuracy 

32 29 91% 37 84% 

 

d) Explore the ability to determine GPS coordinates of crossings to allow data 

to be plotted in a GIS system 

An approach for extracting GPS coordinates from 2D image data was implemented and tested.  

This approach requires placement of a large calibration target in the video to allow for calculation 

of the extrinsic parameters of the camera system. This can allow for coarse estimation of the 3D 

position of objects from a 2D image.  

Rigorous testing and algorithm development for determining the 3D position of pedestrians with 

respect to the 2D camera location was carried out in Quarter 4, 2018.  This required calculating 

intrinsic and extrinsic parameters for the camera systems.  Intrinsic parameters describe lens 

characteristics such as focal length, sensor format, and principle point.  All parameters 

characterize how an image is captured for that particular camera.  Extrinsic parameters describe 
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how the 3-dimensional world is related to the 3D camera coordinates as projected onto a 2D 

frame.  This allows a mapping between 2D image coordinates, and real-world 3-dimensional 

position.  For a detailed summary and analysis on the technique, see Appendix 2. 

Calibrating a single camera and lens is a laborious process.  It requires using a hand-held target 

with a pattern (usually a checker-board) to be captured at several locations in an image; 

sometimes several hundred images are required per camera/lens combination.  Software 

algorithms then take these images and calculate the intrinsic parameters automatically.  This 

process is complicated by the fact that the trailer system camera location and zoom can be 

physically changed.  For a perfect system, the lens intrinsic properties must be calibrated at every 

discrete zoom level, which is unrealistic to achieve due to the amount of labor required.   

The team explored the relationship between the camera intrinsic parameters and zoom levels to 

establish the possibility of defining a function to estimate camera intrinsic properties at different 

zoom levels.  This was achieved by manually measuring intrinsic camera values at three discrete 

zoom levels.  Using these three points, the team was able to identify a linear relationship between 

zoom level and intrinsic parameters.  Using this, they built a model to predict intrinsic parameters 

at different zoom levels.  Results from testing the camera model are shown in Figure 17. 
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Figure 17 - Predicted Zoom vs. Actual Using Camera Model 

As can be seen in the figure above, the camera model is able to accurately predict the focal length 

(and associated intrinsic properties) given an arbitrary zoom level as reported from the camera.  A 

technical document generated as part of this testing is included in Appendix 3. 

Extrinsic camera properties are solved similar to intrinsic properties, where a calibration target is 

utilized in a single image.  Another algorithm identifies the target, and given the intrinsic 

parameters, is able to solve the extrinsic parameters required for characterization of 3D position 

from the 2D image.  A picture of the calibration target is shown in Figure 18. 

 

Figure 18 - Calibration Target for Camera Extrinsic Parameters 

Given camera extrinsic properties, a plane can be projected into the image frame along the axis of 

the calibration target.  This plane describes the (non-occluded) ground location in 3D space as 

projected into the 2D image frame.  Herein lies one of the fundamental limitations of the current 
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algorithm, it assumes that the road surface on all sides of the camera system is relatively flat and 

not undulating (such as on hills).  Current work is focused on solving the easier problem, that of 

flat roads, before augmenting the algorithm with more dynamic topologies.  A sample image of 

the calibration target as taken in the lab is shown in Figure 19.  The plane defined by the 

calibration is illustrated in the three axes along the calibration target’s upper right corner.  The red 

and green arrow define the x and y axis of the plane, with the blue arrow being normal to the 

plane. 

 

Figure 19 - Camera Extrinsic Target 

Several tests were carried out to validate the 3D position estimation algorithm. Technical 

documents for these tests are available on request.  For this testing, the extrinsic camera 

properties were used to estimate the location of a target in subsequent image frames.  Table 2 and 

Table 3 highlight results from two of these tests. 
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Table 2 - Short Range Position Estimation Results 

 

Table 3 - Long Range Position Estimation Results 

 

Data was collected using the trailer system on the Georgia Tech campus with the goal being to 

test the 3D position estimation algorithms. Unfortunately, the algorithm was not able to detect the 

calibration target in the images as it was too saturated and the image quality was too 

compromised.  An image of the calibration target captured during data collection on campus is 

show in Figure 20.  The calibration target is located in the bottom middle of the image.  The 

oblique angle in combination with the camera resolution and image compression cause the target 

to get identified with large error. Current work is focused on solving this issue with further real-

world testing of the system and various calibration targets. 
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Figure 20 - Campus Testing of GPS Location Capability 

As an exploratory task, this activity has been completed for the scope of the current project. 

Several other research projects and open-source algorithms have shown the capability to map a 

flat road-surface into a GIS system in order to determine object speeds and positions in GPS 

coordinates.  This functionality can be used by the current system in intersections and locations 

where the road surface is flat.  However, in the case of midblocks and long stretches of road 

where there are hills and undulating geometry, these algorithms break down.  A method for 

mapping uneven terrain and complicated geometry is required in order to determine global 

position data for objects in complex scenes.  Promising approaches are currently being researched 

by several institutions including Microsoft [14].   

e) Make further improvements to system processing time 

Effort was spent examining the current database table and field layout in terms of optimization.  

An approach for redesign of the internal database structure was identified with the explicit goal of 

improving report generation time with large sets of trajectory data.  For example, a single day of 

pedestrian crossing data can contain over a hundred thousand records (as seen from field testing 

the system in the past).  Generating reports on these large sets of data is computationally intensive 

and leads to sometimes several minute waits for report generation.  Standard optimization 
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methods were used to improve this processing time to ensure that reports can be readily generated 

in a reasonable amount of time. 

Report generation used to be slow due to inefficiencies in the database structure. Therefore, the 

database was modified to include unique keys to help with fast indexing during the “select” 

queries from the report generation tool.  Figure 21 shows the modified schema for the database. 

The field filenames Cam_ID, startTime, and frameTime are used to navigate to sections of the 

video in the playback tool. A new field index_num was added as a unique key that auto-

increments for each new entry added to the table. The unique key allows faster access. 

 

Figure 21 - New Database Structure 

The improvement in performance was tested with continuous queries of different types to the 

database. Figure 22 shows the return times for this test. As shown, all queries for report 

generation, even those containing over 500,000 rows of data, completed in less than one second. 

This is a vast improvement from the several seconds (sometimes more than 30 seconds) of query 

times previously. 
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Figure 22 - Time-Test Results from Database Queries 

With the report generation tool optimized, efforts were spent examining ways to improve the 

previous tracking tool processing time.  The tracking tool was benchmarked on the previous field 

test data sets and efforts were spent adjusting the tracker parameters in an attempt to optimize the 

processing time while maintaining system accuracy.  It was found that tracking performance is 

highly scene dependent. For example, scenes with more complicated geometry (such as 

buildings) led to longer processing times per frame.  In addition, the more moving objects, such 

as cars and pedestrians, in a scene also impacted the processing time for each frame.  

New data collected at sites around the Georgia Tech campus identified additional issues with the 

previous commercial tracker being used for pedestrian detection.  In addition to the tracker 

performance being negatively impacted leading to longer processing times when there are large 

numbers of pedestrians, the tracker accuracy falters as can be seen in Figure 23. This was found 

to be unacceptable for tracking at all types of varying locations and was a major factor in moving 

to a new detection and tracking solution. 
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Figure 23 - Pedestrian Tracker Accuracy Negatively Affected by High Volumes 

As part of the development of the new tracker, a new PC was purchased with modernized 

hardware including an Nvidia GPU.  Utilizing the new GPU, the selected DNN (Yolov3) was 

optimized and a TensorRT implementation of the classification network was generated.  This 

optimization allows for a lower memory footprint and faster processing times for the detection 

and tracking algorithms.   

The detector network is created in TensorRT at three different resolutions for flexibility: low, 

medium, and high. The low resolution allows faster processing, perhaps, real-time, while it might 

miss detections that are too small, e.g., pedestrians at a distance. The high resolution, running 

very close to captured (720p HD) resolution, allows the capture of many more detections, but is 

not efficient in processing time and needs marginally more RAM on the GPU. The medium 

resolution network provides a nice tradeoff between the two.  Figure 24 and Figure 25 summarize 

the processing time per frame and the GPU memory required for detection and tracking, 

respectively. 
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Figure 24 - Inference Time for Detection and Tracking 

 

Figure 25 - GPU Memory Usage 

Further modifications were made to the processing system to improve processing time. It was 

discovered that the current design of the software communication to the database for logging 

trajectory data was non-optimal due to the reuse of a single connection to the database.  This 

means that for each trajectory written to a database, the connection must be opened, the data 

written, and then the connection closed.  Maintaining an open connection allows for a speedup of 
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approximately 13 times.  To further improve performance, a connection pool was implemented, 

allowing for multiple simultaneous connections to the database.  The result of this is faster tracker 

performance. 

Table 4 shows the times from three different tests, each with three different configurations. All 

the tests use a 30-second video clip, with the detector running on all types (pedestrians, vehicles, 

and cyclists). All the objects are detected, tracked, and written to the database. All the database 

queries are handled efficiently with a pool of connections to maximize query executing 

performance. As mentioned above, the pool of connections is maintained to avoid reconnections 

to the server for every write. 

Table 4 - Tracker Database Query Optimization Results 

Frames 

Processed 

Total Time Average Per 

Frame 

Database Query 

Overhead 

Average 

Overhead Per 

Frame 

847 27.5 seconds 0.065 s 1.01 s 0.002 

847 44.5 seconds 0.105 s 19.9 s 0.047 

847 26.7 seconds 0.063 s 0.02 s 0.000 

 

The three runs differ in their database connection configuration. The first two are run on a local 

server on Linux. The first one uses additional background processing for database handling so 

that detection/tracking and writing queries are handled in parallel. This only has on overhead of 

~1 second, while the second test, which executes database handling serially with 

detection/tracking, has a total overhead of ~19 seconds. Note, the second test is analogous to the 

previous implementations, but is still faster because it reuses connections via pools. Without the 

connection pools, the overhead is ~35 seconds (not shown here). The third test uses a Windows 

MySQL (remote) server, along with all forms of parallelism explained above. It boasts the least 

amount of overhead.  Therefore, the final database configuration will run the database on a 

Microsoft Windows system, while the tracker runs on a Linux operating system. 



34 
 

Currently, the system is capable of processing 15FPS video data at faster than real-time, with up 

to four simultaneous video streams.  With the current hardware configuration utilizing an Nvidia 

RTX Titan video card with 24GB of memory, the system is able to process more than a dozen 

simultaneous video feeds.  However, with higher framerate video or more than four video feeds, 

the system is unable to maintain real-time processing on the single PC.   

If real-time processing is required for more than four videos, or for videos at significantly higher 

frame rates, the software is designed to allow for addition of more hardware to allow for more 

simultaneous processing.  In this way, a system can be scaled up to allow for real-time processing 

of as many simultaneous video streams as necessary.  Figure 26 illustrates the hardware scaling 

capabilities of the system. 

 

Figure 26 - Hardware Scaling for Simultaneous Video Processing 

f) Improve and characterize system ability to track pedestrians in 

intersections 

The system was initially deployed at locations around the Georgia Tech campus to capture 

pedestrians at intersections.  This data was used for exploring modifications to the previous 

tracking system to improve the ability to accurately detect and track pedestrians in intersections. 

A sample image from an intersection on the Georgia Tech campus is shown in Figure 27. 
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Figure 27 - Video Data Capture at Intersection on the Georgia Tech Campus 

A new tool was created to assist in the development of routines to improve the accuracy of 

pedestrian detection in intersections.  Previously, the system was able to achieve high accuracy 

specifically in midblock locations because vehicles are moving perpendicular to the direction of 

pedestrian crossings.  This allows the system to easily remove false positives due to vehicles.  

Unfortunately, in intersections, both vehicles and pedestrians can be crossing in the same 

directions parallel to each other.  Even though the system has a low false positive detection rate, 

the fact that there are hundreds more cars than pedestrians in a large data set means that false 

detections of vehicles can heavily outweigh positive detections of pedestrians.   

The tool allows for extraction of detections for immediate review.  These detection results include 

pedestrians (positive detections) and false detections on items such as vehicle wheels and fenders. 

Sample images of correct and incorrect classification results are shown in Figure 28. 
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Figure 28 – Sample Images of Positive (Top) and False (Bottom) Detections 

As can be seen in the sample images above, there are several false detections caused by vehicles 

using the previous detector.  The results above further illustrate the need to move to a new 

detector and tracker suite.  The ability to simultaneously characterize vehicles, cyclists, and 

pedestrians using the new Yolov3-based detector eliminates the largest source of error in the 

previous system, which is false detections of pedestrians due to vehicles.  This capability allows 

the trackers to perform with high detection accuracy in various scenarios, in midblocks, 

intersections, and pedestrian corridors. Figure 29 illustrates output from the tracker operating in a 

pedestrian corridor intersection with vehicles.  This image contains the actual pedestrian 

trajectories through a heavily used intersection. 
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Figure 29 – Intersection and Sidewalk with Pedestrian Tracks 

For validation, 30-second video clips were randomly selected from the pool of all videos captured 

by the trailer system and obtained via other sources such as GDOT cameras and online videos. A 

total of 112 video clips were used for validation, of which 55 contained pedestrians in midblock 

crossings, and the remaining 57 contained pedestrians crossing in intersections.  From both of 

these locations, a total of 469 pedestrians were manually identified in the videos.  Of these, 450 

were detected, yielding an extremely high detection accuracy of 96%.  However, count accuracy 

is marginally worse.  This is due to occlusion of pedestrians as they cross in groups, leading to 

excessive multiple counts.  Table 5 details results from the accuracy testing for pedestrians both 

in and outside intersections. 

Table 5 – Pedestrian Accuracy Results 

Location Ground Truth Detected Detection Accuracy Count Count 

Accuracy 

Intersection 291 279 96% 334 85% 

Midblock 178 171 96% 212 81% 

Both  469 450 96% 546 84% 
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g) Add and evaluate vehicle tracking abilities 

Similar to the above sections, the new Yolov3-based detection system includes vehicle detection 

capabilities.  A sample output from the vehicle tracker is shown in Figure 30.  One can clearly see 

in Figure 31 the concentrations of vehicles in the individual lanes from the output of the system.  

 

Figure 30 - Vehicle Trajectories 

 

Figure 31 - Pedestrian Activity at Same Location as Vehicles in Above Image 

With the completion of the new tracker implementation, significant effort was spent validating 

the system accuracy.  In the past, when only pedestrians were considered, this was a substantially 
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easier task.  Now that the system includes vehicles and cyclists, validation becomes a much 

harder prospect, particularly as it relates to manual assessment.  The vast number of vehicles 

make manual assessment very difficult and error prone.  Figure 32 shows a screenshot of the 

tracker output that illustrates performance on a common scene. 

 

Figure 32 - Vehicle Tracker Sample Screenshot 

To characterize accuracy of the vehicle detection and tracking algorithms, fourteen 30-second 

video clips containing vehicles were randomly selected from the pool of videos collected by the 

system and acquired via the GDOT camera feeds.  Each of these clips contained several vehicles.  

The software was run on the video clips and reports generated.  Manual assessment counted a 

total of 163 vehicles.  The detector successfully identified 158 of the vehicles, of which 155 were 

counted via the report generation tool.  The high accuracy of the detector and tracking is due to 

the relatively easy nature of detecting vehicles as opposed to pedestrians and cyclists which have 

significantly more variety in features.  Table 6 summarizes the results from the accuracy 

assessment. 

Table 6 - Vehicle Detection and Tracking Accuracy 

Ground Truth Detected Detection Accuracy Count Count Accuracy 

163 158 97% 155 95% 
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3) Explore data processing with different video sources 

The purpose of this task was to add the capability for the detection and tracking software to work 

with video sources other than those captured on the trailer recording system.  Previously, the 

software required very specific video formats and naming conventions in order to process and 

generate reports.  Modifications were made to the user interface and the processing engine to 

allow for processing of videos from any source.   

Working closely with Dr. Randall Guensler and Dr. Angshuman Guin from the School of Civil 

and Environmental Engineering at Georgia Tech, video was obtained of several locations 

containing different intersections and streets throughout Atlanta.  Some of these sites are already 

shown in the images above.  Two early results from the new tracking system are shown below.  In 

Figure 33, the result from processing a heavy pedestrian corridor is shown.  This data represents 

tracks of pedestrians leaving an event at the Mercedes Benz Stadium.  While several tracks 

accurately show some pedestrians walking through the traffic lanes, most of the pedestrian tracks 

in the road were the result of the detector identifying occupants inside vehicles as pedestrians. In 

Figure 34, showing vehicle tracks in the same location, some errors in the vehicle tracker resulted 

in several straight-line trajectories off to the sides of the roadways.  Both errors were addressed as 

described in the following paragraphs. 
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Figure 33 - Intersection with Heavy Pedestrian Activity 

 

Figure 34 - Vehicle Tracks Illustrating Tracker Errors Due to Configuration 

The errors with the vehicle tracker shown above were related to non-optimal configurations for 

the new tracker. Upon completion of the new tracking software, significant effort was spent 

optimizing the tracker filter settings to maximize performance.  A sample of this improvement is 

presented in Figure 35.  In the screenshots, you can plainly see errors in tracking performance in 

the left hand image that have been eliminated in the right hand image.  In this report, several 

hundred vehicles were detected and tracked.  This also illustrates some of the challenges when it 

comes to validation of system accuracy. 
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Figure 35- Fixed Tracker Errors Due to Configuration Settings 

A second issue with the new tracker was one of almost “too good” performance.  The detector is 

powerful enough to identify occupants inside vehicles.  This means that the trackers are able to 

identify people inside cars, but unable to separate them from people outside cars.  To solve this, 

initial logic was added to the trackers to remove detections that are located inside detected 

vehicles.  Figure 36 shows a sample of a person detected inside a bus, and then the same person 

not detected after adding the new logic to the tracker. 

 

Figure 36 - Vehicle Occupants Counted as Pedestrians Before and After 

Several sample screenshots from the new detector output taken from various video feeds are 

included below (Figure 37-40): 
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Figure 37 - Sample Detector Output 

 

Figure 38 - Sample Detector Output 
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Figure 39 - Sample Detector Output 

 

Figure 40 - Sample Detector Output 
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4) Evaluate the ability to automatically perform incident detection or 

generate a “danger/safety” metric based on vehicle and pedestrian 

interactions 

Significant effort was also expended developing a “danger/safety” metric.  A comprehensive 

literature survey was conducted, which can be found with summaries attached in Appendix 4. A 

software tool able to query reports generated by the report generation tool allows for automatic 

extraction of various vehicle/pedestrian/cyclist interactions.  A software manual for this tool is 

located in Appendix 1. 

A detailed description of the method for extracting potential interactions between pedestrians and 

vehicles is described in Appendix 5. The tracker output can be used to analyze pedestrian and 

vehicle conflicts. The following section details a sample conflict analysis for a processed video 

file. Table 7 and Figure 41 below depict the outputs of the analysis. 

Table 7 - Conflict Detection Sample Data 
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Figure 41 - Conflict Plot 

The conflict table shows the post-encroachment time (PET) of the conflict, the x and y 

coordinates of the conflict location, the unique pedestrian ID, the pedestrian intersection time, the 

unique vehicle ID, the vehicle intersection time, and the conflict category. 

The PET represents the time difference between pedestrian and vehicles at an intersecting point. 

A negative PET means that a pedestrian passes behind a car. A positive PET means a pedestrian 

passes in front of a car, which is a more severe type of conflict. Black dots on the plot depict 

negative PET, and red dots depict a positive PET. A conflict occurs when a unique pedestrian’s 

trajectory intersects with a unique vehicle’s trajectory within a certain time window. A time 

window is applied to filter out less meaningful interactions like a vehicle passing over a 

pedestrian’s trajectory after 30 seconds. 

The intersection coordinates for a given conflict is depicted in the x and y columns of the conflict 

table (Table 7). The pedestrian intersection time (‘Ped Int Time’ column in the table) represents 

the time a pedestrian intersects the conflict points, and vehicle intersection time (‘Veh Int Time’ 

column in the table) represents the same for vehicles. These values are calculated by interpolating 

between the conflict point and individual pedestrian and vehicle trajectories. The times are 

reported in video time, so the values represent when a pedestrian or vehicle are at a conflict point. 
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Conflict category represents whether the pedestrian was travelling horizontally or vertically.  

Figure 42 shows a pedestrian with ID 12 crossing in front of vehicle 375 and behind vehicle 255. 

 

Figure 42 - Conflict Validation 

Table 8 shows a negative PET between pedestrian 12 and vehicle 255, and a positive PET 

between pedestrian 12 and vehicle 375. Manual verification confirmed that the output PETs were 

accurate. Figure 43 contains the associated conflict plot. 

Table 8 - Conflict Table 

 

 

Figure 43 - Conflict Plot 

In certain cases, false-positives can occur. Figure 44 demonstrates one case where a conflict was 

registered, but never actually happened. 
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Figure 44 - False Conflict Sample 

The images above represent conflict 2 in Table 7. Pedestrian 51 is tracked first, then vehicle 574 

“crossed” the pedestrian’s path. In reality, vehicle 574 crossed behind and never intersected 

pedestrian 51’s trajectory.  This is a common occurrence that can cause false positives with the 

current approach. 

Conflict analysis was carried out on four different sites, containing 13 different videos. The first 

site contains both near and far northbound and southbound views on a stretch of Buford Highway, 

as depicted in Figure 45.  The second site consists of all four directions through the intersection of 

Joseph E. Lowery and Joseph E. Boone as shown in Figure 46.  The third site contains all four 

directions at the intersection of Joseph E. Lowery and Martin Luther King as shown in Figure 47.  

Finally, the fourth site contains a single video captured at 10th Street and Myrtle as shown in 

Figure 48.  



49 
 

            

 

Figure 45 - Site 1 along Buford Highway 

 

Figure 46 - Site 2, Intersection of J.E Lowery and J.E. Boone 
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Figure 47 - Site 3, Intersection of J.E. Lowery and M.L.K. 

 

Figure 48 - Site 4 Located at 10th and Myrtle 

Site 1 along Buford Highway contained video data for three days. As seen from the four camera 

views, this area of Buford Highway does not have many crosswalks, so pedestrians must cross 

seven lanes of traffic with vehicles traveling at high speeds. Table 9 depicts the number of 
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conflicts and conflict type for each camera.  In the table, behind conflicts are when the pedestrian 

crosses behind a vehicle, meaning the vehicle is travelling away from the pedestrian.  Therefore, 

behind conflicts can essentially be ignored.  Conflicts are when a pedestrian crosses in front of a 

vehicle, meaning the vehicle is travelling towards the pedestrian.  Near misses are considered 

when the intersection time between a pedestrian and a vehicle is less than 3 seconds. 

Table 9 - Conflict Table for Site 1 

Came

ra 

Total Conflicts Behind Conflicts Behind Near 

Miss 

Conflicts Near Miss 

1 368 184 41 184 152 

2 336 234 50 102 96 

3 140 83 21 57 52 

4 664 447 98 217 195 

 

From the table, the camera view with the highest number of conflicts is camera 4. This data can 

help support an area’s context; this view has a large amount of residences on one side 

disconnected from the MARTA stop and other amenities. The conflict plot for this camera is 

shown in Figure 49. 
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Figure 49 - Conflict Plot for Site 1, Camera 4 

As can be seen in the plot, a significant number of pedestrians (blue lines) preferred to cross the 

street directly in lieu of walking to a safe crosswalk.  In addition, at this particular stretch of 

roadway, vehicles are moving at a significant speed.  While the majority of the conflicts here 

identified were crossings behind a car (black dots), there were still a large number of pedestrian-

vehicle interactions (red dots).  One poorly timed gap or inattentive pedestrian or driver would 

likely cause a severe incident at these speeds. 

Site 2 contains five hours of video.  From the different views, cameras 1 and 4 are pointed at the 

intersection of Joseph E. Lowery and Joseph E. Boone, while cameras 2 and 3 are directed away 

from the intersection. While this is a signalized intersection, conflicts between pedestrian and 

vehicles can still occur from permissive left and right turns, as well as pedestrians disobeying the 

signal head. Table 10 shows that camera 4 had the most conflicts.  

Table 10 - Conflict Table for Site 2 

Camera Total 

Conflicts 

Behind Conflicts Behind Near 

Miss 

Conflicts Near Miss 

1 256 141 31 115 108 

2 277 179 35 98 93 



53 
 

3 14 10 4 4 3 

4 321 171 31 150 136 

 

Figure 50 shows all conflicts plotted for camera 4. Based on the figure, most conflicts occur when 

a pedestrian is within a crosswalk. While vehicles are unlikely to be traveling at high speeds, 

turning vehicles may not properly yield to pedestrians, which generates conflicts. 

 

Figure 50 - Conflict Plot for Site 2, Camera 4 

Camera 2 also has a significant number of conflicts (277). Figure 51 shows the conflict plot for 

camera 2. Camera 2’s view, like Buford Highway, has no crosswalks, yet a high number of 

conflicts. Examining the video, a heavy construction area causes these conflicts as construction 

workers cross the street to go to their personal vehicles parked in a grassy area. This information 

might be useful to policy makers who can encourage developers to implement pedestrian-vehicle 

conflict mitigation efforts. Overall, the conflict tool can highlight unexpected areas of conflict, 

such as a construction area, in addition to providing information about pedestrian safety at 

intersections.  
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Figure 51 - Conflict Plot, Site 2, Camera 2, Construction Zone 

Site 3 contains video at the intersection of M.L.K. and J.E. Lowery for approximately 7 hours. 

Camera 2’s view shows the limitations of the trailer with the gas station sign obstruction (See 

Figure 47). In areas where space is limited, finding an ideal view for all four cameras can be 

difficult. 

As seen in Table 11 from the conflict analysis output, camera 3 and camera 4 have the most 

number of conflicts with camera 3 having 721 and camera 4 having 943. Both of these views 

have more conflicts in 7 hours than Buford Highway had in almost 3 days. This relationship, 

however, should be expected since cars and pedestrians explicitly interact in an intersection. 

Surprisingly, both views had more conflicts than behind conflicts, meaning that pedestrians 

walked ahead of cars. Permissive lefts and rights could cause these relationships.   Figure 52 

shows both the raw camera 4 view and associated conflict plot.  Notice the number of conflicts in 

the crosswalks. 

Table 11 - Conflict Table for Site 3 

Camera Total Conflicts Behind 

Conflicts 

Behind Near 

Miss 

Conflicts Near 

Miss 

1 367 213 43 154 140 
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2 55 35 8 20 14 

3 721 356 91 365 302 

4 943 443 89 501 446 

 

 

Figure 52 - Raw Image and Associated Conflict Plot for Site 3, Camera 4 

Site 4 contained video collected using a GoPro over a period of about a day. This data was 

collected before any RRFB or HAWK signal was installed at the intersection of 10th Street and 

Myrtle. From the data, over 600 conflicts occurred in a single day. Most of these conflicts were 

conflicts where pedestrians walked in front of a vehicle. Additionally, a significant number of 

these conflicts are classified as near misses where a vehicle crosses a pedestrian's path in 3 

seconds or less. Figure 53 shows the distribution of conflicts by conflict type, with severe (Sev) 

meaning the vehicle and pedestrian trajectories intersected within one second of each other. 
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Figure 53 - Conflict Distribution by Type at Site 4 

Figure 54 shows that many conflicts occur at the 10th Street crossing, as well as the driveway to 

an apartment and retail complex. Since this time, a HAWK intersection has been installed at this 

location.  The conflict tool can potentially be implemented in before and after studies to 

understand the effectiveness of conflict mitigation methods. 

 

Figure 54 - Raw Image and Associated Conflict Plot for Site 4 

 

Each site has its own context that a transportation engineer must incorporate in the conflict 

analysis. For example, Buford Highway and 10th and Myrtle are un-signalized sites with right 
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angle conflicts, while Joseph E. Lowery and Joseph E. Boone are focused on intersections with 

many conflicts which are likely caused by permissive turns. The conflict analysis allows GDOT 

to empirically compare different locations and proactively implement conflict mitigation 

measures.  

One method of comparing different sites includes analyzing the exposure rate. Since different 

sites have different numbers of pedestrians crossing and different context, analyzing the exposure 

rate provides a normalized comparison of different sites and camera views. Table 12 shows the 

total number of pedestrians, conflicts, and conflict percentage (total conflicts/total pedestrians) 

for each site and camera view.  

Table 12 – Normalized Conflict Results 

Site ID  Camera ID Total Pedestrians Total Conflicts Conflict % View Context 

1 1 955 368 39% Midblock close 

1 2 789 336 43% Midblock far 

1 3 749 140 19% Camera 1 far 

1 4 653 664 102% Camera 2 close 

2 1 715 256 36% Intersection 

2 2 314 277 88% Construction 

Midblock 

2 3 113 14 12% Midblock Near 

Intersection 

2 4 1243 321 26% Intersection 

3 1 365 367 101% Midblock 

3 2 1055 55 5% Midblock Near 

Intersection 
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3 3 1619 721 45% Intersection 

3 4 2215 943 43% Intersection 

4 1 2879 613 21% Un-signalized 

Intersection 

 

Based on the table above, different camera views and sites have varying conflict percentages. 

Surprisingly, the number of conflicts on some sites is greater than the actual number of 

pedestrians. Looking at view context and conflict percentage shows that a relationship between 

the two exists. The highest three conflict percentages occurred at midblock crossings that were 

close to an intersection. The lowest two conflict percentages occurred where a midblock crossing 

would occur; however, an intersection was nearby. From this analysis, proximity to an 

intersection discourages midblock crossings. Additionally, midblock crossings not near 

intersections have high conflict rates. This relationship also is intuitive; a person crossing 

midblock may conflict with multiple cars in each direction. Alternatively, a person crossing at an 

intersection would likely only conflict with one or two cars that are turning permissively.  

This comparison provides GDOT with insights on which areas need infrastructure changes. 

Rather than reacting to pedestrian-vehicle crashes or fatalities, the trailer and conflict analysis 

provide GDOT the data to prevent accidents.  

In addition to all analysis-oriented outputs, the conflict code also generates a .csv file that is 

compatible with the video playback tool. The conflict playback jumps to the time and location 

where a conflict occurs for a pedestrian. This video playback compatibility allows for ease of 

manual validation and provides compelling video of people crossing the street.  Directions on 

how to use this tool is included in Appendix 1. 
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To validate accuracy of the conflict analysis, manual validation was performed.  A total of 764 

conflicts from the tests above were identified as ‘real’, meaning they were manually viewed in 

video data using the video playback tool mentioned previously. For each of these 764 conflicts, 

the pedestrian encroachment times (PET) were logged. The automatically calculated 

encroachment time was compared to physical time by counting the number of frames in the video 

between a pedestrian and vehicle trajectory intersecting.  Table 13 depicts the average time 

differences for this dataset of 764 real conflicts.   

Table 13 - Conflict Analysis Validation 

Average Difference (Detection - GT)  Cam1 Cam 2 Cam3 Cam4 Averag

e 

All Conflicts 0.14 0.01 0.10 0.11 0.09 

All Behind Conflicts -0.05 -0.07 0.09 0.09 0.00 

All Front Conflicts 0.35 0.17 0.11 0.14 0.21 

All Away Conflicts 0.36 0.40 0.20 0.27 0.33 

All Toward Conflicts -0.05 -0.08 -0.03 0.00 -0.04 

Away & Behind 0.08 0.18 0.16 0.24 0.17 

Away & Front 0.81 0.75 0.30 0.33 0.59 

Toward & Behind -0.19 -0.11 -0.07 0.00 -0.09 

Toward & Front 0.08 0.00 -0.01 0.00 0.02 

 

Overall, the tracker PET outputs are within a tenth of a second of actual. The main flaw that 

occurs is associated with away conflicts. Away & Behind conflicts have an average difference of 

0.17 seconds, while Away & Front conflicts have an average difference of 0.59 seconds. The 

location where the trajectories are drawn causes these differences. By default, both vehicle and 

pedestrian trajectories are drawn at the middle-bottom of the shapes bounding box. For a car 
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traveling away from the camera, that means the back of the car intersects the pedestrians path, not 

the front. For cases where a pedestrian walks in front of a vehicle (positive PET), the conflict tool 

detected outputs on average 0.59 seconds greater that what actually occurred.  

In addition to comparing PETs, the manual validation also documented the number of false 

positives. If a conflict ended up as a false positive, it was categorized into the following different 

categories: Motorcycle, Turning, Object on car, On Sidewalk, Headlight, and Other. Validation 

occurred on 1.5 days’ worth of data, which had a total initial value of 1508 conflicts. Of these, 

1340 were validated as real conflicts. This dataset had an 11% false positive rate. Table 14 

contains the validation results from these efforts.  The first two rows contain the total accuracies, 

followed by a breakdown of percent of false positives for each category. 

Table 14 - False Positive Analysis for Conflict Reports 

 Camera 1 Camera 2 Camera 3  Camera 4 Total Accuracy 

Real 

Conflicts 

270 320 128 622 1340 89% 

False Positive 98 16 12 42 168 11% 

Motorcycle 23 7 7 7 44 26% 

Turning 31 0 0 0 31 18% 

Object on car 6 1 0 0 7 4% 

On Sidewalk 0 1 1 18 20 12% 

Headlight 23 6 4 4 37 22% 

Other 15 1 0 13 29 17% 

5) Improve trailer hardware system 

Feedback from GDOT personnel using the system indicated that there was an intermittent issue 

related to activating the video cameras on the trailer system in the recording tool software.  It was 
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found that there was an IP address conflict in the system related to dynamic IP addressing of the 

IP interfaces.  To fix this, the camera configurations on the trailer system were updated. The IP 

cameras are connected to the PC using an unmanaged network switch. This resulted in dynamic 

IP address allocation by Windows as the cameras appear as devices through new interfaces even 

though the cameras themselves had a static IP address. To make Windows use the IP address as 

set by the cameras, it needed to be forced onto the same IP address range as the cameras. That is, 

since the cameras are available on 192.168.1.101 – 192.168.1.104, manually setting IP addresses 

for those interfaces that connect the cameras to the PC to 192.168.1.201 – 192.168.1.204 (no 

particular order) fixed the issue. 

After evaluating potential improvements to the trailer system such as the ability to run off of 

generator power, it was determined that any modification would cost too much and not add 

enough value to the trailer system. This is due to the requirement that any modifications to the 

current system would require shipping the trailer back to the supplier, incurring a heavy cost.   

Therefore, this task has been marked complete as it has been overcome by events. 

6) Perform training and demonstration of the system for GDOT 

personnel  

The system and software was demonstrated to Jack Anninos and David Jared on August 5, 2019.   

The new software and user-interface were demonstrated.  Discussions for the remainder of the 

project and close-out plan were also held.  Potential follow-on work was discussed, which was 

included in a needs statement that was submitted in September 2019. 

Anticipated Impact  

Work performed under this research project will enable a cutting-edge, relatively low-cost 

platform allowing for rapid classification of pedestrian, cyclist, and vehicle behavior in any area 
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accessible via video streams.  The current state-of-the-art requires custom tailored algorithms, 

hardware, and contract work incurring heavy costs.  Success of this system will enable this data to 

be collected rapidly and at a low cost.  In addition, outputs from the system can allow for 

automatic detection of “areas of interest” where undesirable or unsafe behavior is occurring.  This 

capability can enhance not only the Georgia Department of Transportation’s capabilities, but 

those of all transportation authorities both federal and state. 

Conclusions and Recommendations 

A new software system based on the Yolov3 neural networking framework was developed and 

tested allowing for detection and tracking of pedestrians, cyclists, and vehicles in midblock and 

intersection locations.  During the duration of the project, video was acquired and processed for 

37 videos over nine separate sites.  Table 15 shows results from accuracy testing for each of the 

classes.  Future work should focus on detecting and combining pedestrians that are counted 

multiple times, resulting in high estimates for the counts, leading to error.s 

Table 15 - Detector and Tracker Accuracy 

Type Ground Truth Detected Detection Accuracy Count Count Accuracy 

Cyclists 32 29 91% 37 84% 

Vehicles 163 158 97% 155 95% 

Pedestrians 469 450 96% 546 84% 

 

A conflict analysis software tool was developed and tested allowing for detection of interactions 

between pedestrians and vehicles.  This tool was validated on 13 videos across four different 

sites.  For conflict identification, manual assessment established an accuracy of 89% with a false 

positive rate of 11% over 1508 potential conflicts.  Pedestrian encroachment time automatically 
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calculated by the system was validated to be within .5 seconds of actual, yielding a high 

confidence in the system’s ability to automatically identify and log conflicts. 

A video playback tool was developed that allows for immediate viewing in video of pedestrians, 

cyclists, and vehicles based on the output from the report generation tool.  This tool was extended 

to allow for viewing of conflicts using the reports generated from the conflict analysis tool. 

An approach for localizing trajectories in a geo-spatial frame was developed and tested.  This 

approach worked well for scenes with flat surfaces such as in an intersection or along a flat road.  

For undulating surfaces, these routines failed.  Further work should be conducted in order to 

enhance the system’s ability to geo-locate trajectories in scenes with complex geographies. 
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Appendix 1 – Software Manuals 

Pedestrian Video Recording Tool Manual 

Pedestrian Video Recording Tool 

Software Manual 

Description 

The pedestrian Video Recording Tool (VRT) is the program required for recording video feeds 

for future processing for the pedestrian detection system.  This program requires that the cameras 

be positioned in their ideal orientations for recording using a 3rd party program as detailed in this 

document.   This tool allows a user to configure the cameras and start recording video in the 

required format for the Pedestrian Tracker Tool.  See the Pedestrian Tracker Tool Software 

manual for details. 

Initial Set-up Process 

The trailer system contains a recording PC and four high definition AXIS brand IP cameras.  

Once the trailer has been physically deployed, a connection to the PC is required in order to 

configure the cameras and initialize the recording.  This is accomplished either by connecting a 

monitor and a mouse directly to the PC, or by establishing a remote connection to the PC using a 

windows laptop, the wifi connection, and the remote desktop application provided by windows. 

The trailer IP address is 192.168.0.135, you must use this address to establish the connection in 

the remote desktop software.  Please refer to the windows documentation for usage of the remote 

desktop program.  Once a connection is established, the remote desktop program will ask for a 

password.  The password for the system is “trailer”.  An image of the Remote Desktop 

Connection dialog is shown in Figure 55. 

 

Figure 55 - Remote Desktop Dialog 

Trailer IP:  192.168.0.135    Password:  trailer 
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Once the trailer/recording system has been properly deployed, and a remote desktop connection 

to the PC has been established, the cameras must be positioned using the Axis Camera 

Companion software.  In order to start this software, double click the Axis Camera Companion 

shortcut on the desktop.  An image of this icon is shown in Figure 56. 

 

Figure 56 - Axis Camera Companion Icon 

Once the Axis Camera Companion application is run, you will be presented with a password 

request.  There is no password, so this can be skipped by pressing the arrow button to the right of 

the edit box.  This will take you to the main dialog for the cameras.  The password request dialog 

with a red arrow indicating the button to press is shown in Figure 57. 

 

Figure 57 - Axis Camera Companion Login Dialog 

Next you will see a display with all four cameras.  This is where the cameras can be positioned 

and zoomed to the appropriate desired locations.  Pick a camera by clicking on one of the four 

camera icons along the bottom of the dialog.  Zooming is achieved using the +/- keys on the 

keyboard or the scroll wheel on the mouse.  Changing where the cameras are pointing is simply 

performed by clicking in the image where you would like the center of the image to be.  This will 

move the cameras to center them on the point that was clicked in the image.  A screenshot of this 

dialog is shown in Figure 58.  There is extensive documentation on the operation of this program 
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located in the Axis folder from the start menu if necessary.

 

Figure 58 - Camera Selection Dialog 

Once all four cameras are positioned appropriately, exit the Axis Camera Companion application 

and start the VRT.  To start the VRT, simply double click the icon on the desktop.  The VRT icon 

is shown in Figure 59. 

 

Figure 59 - Video Recording Tool Icon 
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VRT – Main Dialog 

 

Figure 60 - Video Recording Tool Dialog 

1 – Camera View Windows 
View for displaying the live camera feeds once the cameras are acquired.  

2 – Save Location Selection Button 
Button for selecting the folder to save video data. 

3 – Acquire Camera Button 
Button for acquiring and connecting to all IP cameras. 

4 – Record Button 
Button to start and stop recording. 

5 – Site ID Edit Box 
Button to set the site identifier associated with the recorded video. 



69 
 

6 – Time Segment Length Edit Box 
Edit box for setting the length of time for each individual recorded file in hours.  Can accept 

fractions of an hour.  It is suggested not to set this higher than 1 hour. 

Steps for recording Video 

This section describes the steps necessary to connect to the IP cameras and record video data. 

1. Acquire and connect to the IP cameras using the Acquire Cameras button (3) 

a. A dialog will pop up asking for a password.  Because there is no password for the 

IP cameras, press the “Cancel” button as illustrated in Figure 61 to ignore.  You 

may have to do this once for each camera. 

 

          

Figure 61 - Video Recording Tool Dialog 

 

2. Press the Acquire Cameras button (3) a second time to acquire the cameras.  The cameras 

should appear in the Camera View Windows (1) as illustrated in Figure 62.  The camera 

image will be cropped and only a portion will be shown.  The full view should be pre-

configured via the Axis Camera Companion application as described in the above 

section. 

 

Figure 62 - Video Recording Tool Dialog with Initialized Cameras 
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3. Select the location to save the images using the Save Location Selection button (2).  This 

will open a dialog allowing you to select or create a new directory as shown in Figure 63.  

This will act as the top-level directory where the files will be saved. 

 

 

Figure 63 - Save Location Dialog 

 

4. Set the Site Identifier using the Site Identifier edit box (5).  This will create a subdirectory 

with the name of the site identifier under the directory that was specified in step 3.  All 

videos will be saved to a subfolder for each camera under the main directory.  Do not 

modify or change the directory names as these are required for the Pedestrian Tracking 

Tool. 

5. Set the time segment length of each video clip using the Time Segment Length edit box 

(6).  This will set the length of each recorded video clip.  The unit is hours and will take 

fractions of an hour.  It is recommended to use between .5 and 1 hour segments, but any 

segment length can be selected. 

6. Press the Record button (4) to initiate recording.  When recording the button will change 

from green to red.  You can press the button a second time to stop the recording.  The text 

of the button will change from a green “record” to a red “Stop” when recording as shown 

in Figure 64. 

 

 

Figure 64 - Record Button Text 

7. When recording, the Record button will turn red and read “Stop”.  Press the button again 

to stop the recording.  The button will turn green and read “Record” when it has 

successfully stopped.  Recording can be started and stopped as often as desired. 
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Pedestrian Tracking Tool Manual 

Pedestrian Tracker Tool Software 

Manual 

Description 

The pedestrian tracker tool is the program for processing raw video data and detecting 

pedestrians. Their trajectories as they cross the road are recorded to a local database for future 

analysis. This tool allows a user to specify the video source, configure the image streams, and 

select which database ID to use for data storage. This manual describes those processes in detail. 

Figure 65 shows the sample user interface for the tool. 

User Interface – Main Dialog 

 

Figure 65 - Pedestrian Tracker Tool User Interface 

        1 – Select Directory Button   8 – Process Single Video Box 

        2 – Site ID Edit Box 8a – Select Video File Button 

        3 – Additional Notes Edit Box 8b – Input Start Time Edit Boxes 

        4 – Camera Selection Check Boxes   9 – Process Feedback 

        5 – Create Mask Button 10 – Process Button 

        6 – Load Mask Button 11 – Stop Button 

        7 – Camera View Windows 12 – Exit Button 
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1 – Select Directory Button 

Clicking the Select Directory Button will open a dialog asking the user to select the directory 

containing the raw video data.  It is important that the video data is in the format required for 

processing.  This format is automatically created from the Video Recording Tool (see Video 

Recording Tool Software Document for details).  Video files are located in a subfolder named 

after their site identifier (as assigned in the Video Recording Tool).  Each camera has a subfolder 

containing their respective video files.  Please select the top level (Site ID) folder.    For example, 

in the sample file structure in Figure 66, the top level folder that should be selected is named 

‘Site1’.  Site identifier folder names will typically be numeric (example:  001, 002, 003, etc.). 

 

Figure 66 - File Structure Sample 

Once selected, the dialog will automatically populate the camera views (7) for the selected 

cameras with the first image from the first video in each camera subfolder.  Only cameras that are 

selected to be processed will have populated views.  The dialog will throw an error if the video 

file structure is incorrect, or if video files are not located properly.   

2 – Site ID Edit Box 
Enter the Site Identifier number into the Site ID Edit Box.  This number will be used in the 

database for all data commitment and future retrieval.  This must be the same number as the Site 

identifier used as the folder name as assigned from the Video Recording Tool.   

3 – Site Description Edit Box 
Enter an optional text description of the site in this edit box.  Typically this is used for special 

notes or for containing the address of the site.  This description will be logged to the database in 

the Site ID table to the Site Description field for future retrieval (See the Database Design 

Document for details on database tables and fields). 

4 – Camera Selection Check Boxes 
These check boxes will select and de-select which camera videos to process.  Only selected 

(checked) camera video feeds will be processed and results stored in the database.  This allows 

for processing of sites with fewer than four cameras. 

5 – Create Mask Button 
There is a Create Mask Button for each camera.  This button will only be enabled if the camera is 

selected via the associated camera check box.  This button will open a dialog for creating a new 

image mask, which is a required step for processing video data.  See details and instructions for 

the Create Mask Dialog in the following section in this document. 

6 – Load Mask Button 



73 
 

Similar to the Create Mask Button, this button is only enables if the associated camera is selected.  

This button allows for loading of a previously generated mask using the Create Mask Button.  

This is primarily used for reprocessing of data. 

7 – Camera View Windows 
Once a site is loaded via the Select Directory Button, camera views for each of the selected 

cameras (via the Camera Selection Check Boxes) will be shown in these windows.  The image 

shown in loaded from the first frame in the first available video file in each of the associated 

camera folders.  Once a mask is applied via the Create Mask or Load Mask buttons, the mask will 

be drawn onto the image.  This allows for visual verification videos before starting processing. 

8 – Process Single Video Box 
Checking the Process Single Video Box enables both the Select Video File Button and Input Start 

Time boxes. Additionally, only Camera 1 in the Camera Selection Check Boxes remains enabled. 

This feature allows for a single video to be processed.  

8a – Select Video File Button 
The Select Video File Button will open a dialog similar to the Select Directory Button. Instead of 

a folder, however, the users selects a single video file to be processed.  

8b – Input Start Time Edit Boxes 
The Input Start Time Edit Boxes requires the user to input the start time of the video. The input 

start time requires the user to input the start time of the video for the tracking software to put 

timestamps into the database. If the video start time is unknown, any time can be entered.  

9 – Process Feedback 
The Process Feedback box populates with the Site ID currently being processed. Once the site 

has completed processing, the Process Feedback box will be blank. The “Connection Status” text 

informs the user whether the server is connected or not. The server must be connected to process 

results. 

10 – Process Button 
The Process Button will initiate the pedestrian tracking algorithms on the selected video feeds via 

the Camera Selection Check Boxes.  Once processing has initiated, tracker results will be logged 

to the local database with the given Site ID.  Current processing time about real time, meaning for 

each hour of video data, it will take approximately one hour of processing time.  This time is 

faster if fewer cameras are selected for processing. 

11 – Stop Button 
This button will interrupt processing. 

12 – Exit Button 
This button will interrupt any ongoing processing and quit the program.  If no processing is 

currently being performed, it will simply quit the program. 

Create Mask Dialog 
This dialog is created when the user presses the Create Mask Button on the main User Interface.  

This dialog will load the image shown in the corresponding camera view and allow for creation of 

an image mask.  An image mask is simply a way of defining areas in an image to process, and 

areas to ignore (do not process).  This is required to speed up the algorithms and to remove 
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tracking of trajectories for pedestrians that are not of interest.  For example:  pedestrians walking 

on the sidewalk, or crossing in locations that you want to ignore. Figure 67depicts the Create 

Mask user interface.  

 

Figure 67 - Mask interface with button labels 

1 – Fill Area Button 
This button will fill the current defined polygon with black pixels (see section Creating a Mask 

for details).  It will be immediately viewable on current image.   

2 – Save Mask Button 
This button will open a save file dialog to save the mask.  Type the filename you wish to save as, 

and click OK.  Upon exit, the mask will be saved to disk and automatically applied to the current 

camera selection for processing.  The User Interface will reflect the changes in the mask in the 

camera view windows. Figure 68 shows masked images ready for processing is shown below. 

The masked areas are shown as blacked out regions. 
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Figure 68 - Sample user interface with masked images 

3 – Undo Button 
This button will remove the last polygon that was filled.  Use this if you are not happy with the 

current mask results.  This will only undo the most recent filled polygon. 

4 – Cancel Button 
This button will close the dialog and discard and changes.   

Steps for processing 
This section describes the steps necessary to load and process a video.   

1. Select the video file directory using the Select Directory Button (1) 

2. Enter the site ID using the Site ID Edit Box (2) 

3. Enter the optional site description in the Site Description Edit Box (3) 

4. Select the Cameras to process with the Camera Selection Check Boxes (4) 

5. Load or create the image mask using the Create Mask or Load Mask Buttons (5,6).  See 

the Creating a Mask section for details. 

6. Make sure the images are ready for processing by visualizing the masks and images in 

the Camera View Windows (7) 

7. Press the Process Button (8) to start processing.  

Creating a Mask 
This section describes how to create a mask for a camera to prepare for processing.  The purpose 

of creating a mask is foremost to ignore areas of the image where we do not want to track 

pedestrians such as on sidewalks or other areas that are not of interest for the particular analysis.  

This section assumes you are already familiar with the dialog and the buttons as described above 

in this document. 

Creating a mask requires filling in polygons in the image with black pixels.  The polygons are 

created by clicking in the image with the left mouse button.  3 or more points defines the polygon 

for filling with pixels.  If you make a mistake, you can always use the Undo Button. 

1) Using the mouse, create anchor points by clicking in the image where you want the 

corners of your shape to fill. 

2) Press the Fill Area Button (1) to fill the area with black pixels.  The dialog will update the 

image with the filled pixels.  Figure 69 depicts a filled polygon. 
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Figure 69 - Sample Filled Polygon 

 

3) Repeat this process as many times as necessary to fill in all the areas of the image that 

you do not want to process.  A finished mask image is shown in Figure 70.  

 

 

Figure 70 - Sample finished mask image 

 

4) Click the Save Mask Button (3) to save the mask and apply it to the camera video stream.  

Once applied it will be immediately visible in the main user interface as shown in Figure 

71.  

 

Figure 71 - Sample applied mask 

5) Click the Exit Button if you want to exit the dialog and discard the mask.  No image 

mask will be applied to the video stream.  You MUST click the Save Mask Button to save 

and apply the mask. 
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Report Generation Tool Manual 

Pedestrian Report Generation Tool 

Software Manual 

Description 
The pedestrian Report Generation Tool is the program for generating and viewing results 

generated from the pedestrian tracking program.  This program is designed to be run after 

completing analysis with the PedMon Tracker Software.  See the PedMon Tracker Software 

Manual for details.  This tool allows a user to specify the site identification, select which 

camera’s to query, and select the time period for reporting.  This manual describes those 

processes in detail. Figure 72 shows the sample user interface. 

User Interface – Main Dialog 

 
Figure 72 - Report Generation User Interface 

         

        1 – Select Directory Button 8a – Select Video File Button 

        2 – Site ID Edit Box   9 – Draw Trajectory Arrows Check Box 

        3 – Additional Notes Edit Box 10 – Enter Start/Stop Time Edit Boxes 

        4 – Camera Selection Check Boxes 11 – Report Type Buttons 

        5 – Load Background Button 12 – Save Pictures Check Box 

        6 – Walking Direction Button 13 – Generate Report Button 

        7 – Camera View Windows 14 – Stop Button 

        8 – Process Single Video Check Box 15 – Exit Button 
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1 – Select Directory Button 
Clicking the Select Directory Button will open a dialog asking the user to select the directory 

containing the raw video data.  It is important that the video data is in the format required for 

processing.  This format is automatically created from the Video Recording Tool (see Video 

Recording Tool Software Document for details).  Video files are located in a subfolder named 

after their site identifier (as assigned in the Video Recording Tool).  Each camera has a subfolder 

containing their respective video files.  Please select the top level (Site ID) folder.    For example, 

in the sample file structure in Figure 73, the top level folder that should be selected is named 

‘Site1’.  Site identifier folder names will typically be numeric (example:  001, 002, 003, etc.). 

 

Figure 73 - File Structure Sample 

Once selected, the dialog will automatically populate the camera views (7) for the selected 

cameras with the first image from the first video in each camera subfolder.  Only cameras that are 

selected to be processed will have populated views.  The dialog will throw an error if the video 

file structure is incorrect, or if video files are not located properly.   

2 – Site ID Edit Box 
Enter the Site Identifier number into the Site ID Edit Box.  This number will be used in the 

database for all data retrieval.  This must be the same number as the Site identifier used as the 

folder name as assigned from the Video Processing Tool.   

3 – Additional Notes Edit Box 
Use this edit box to enter any notes that may be pertinent to this report.  Notes entered here will 

be printed into the resulting report file generated. 

4 – Camera Selection Check Boxes 
These check boxes will select and de-select which camera trajectories to report.  Only selected 

(checked) camera video feeds will be processed and results generated.  This allows report 

generating for sites with fewer than four cameras. 

5 – Load Background Button 
Report generation requires an image from the site in order to properly visualize pedestrian 

crossings.  If video files are not available as described above using the Select Directory button, an 

alternate method is to load the image manually.  This requires that an image from the video data 

exists.  Pressing this button will open a dialog allowing the user to select the image for drawing.  

The image will immediately show up in the associated camera view window for the selected 

camera.  

6 – Select Walking Direction Button 
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There is a Select Walking Direction Button for each camera.  This button will only be enabled if 

the camera is selected via the associated camera check box.  This button will open a dialog for 

selecting the slope of the direction of pedestrian crossing, which is a required step for generating 

report data.  See details and instructions for the Select Walking Direction Dialog in the following 

section in this document. 

7 – Camera View Windows 
Once a site is loaded via the Select Directory Button, camera views for each of the selected 

cameras (via the Camera Selection Check Boxes) will be shown in these windows.  The image 

shown is loaded from the first frame in the first available video file in each of the associated 

camera folders.  Once the pedestrian crossing direction is applied via the Select Walking 

Direction button, the slope of the crossing will be drawn onto the image.  This allows for visual 

verification videos before starting processing. 

8 – Process Single Video Check Box 
Checking the Process Single Video Box enables both the Select Video File Button. Additionally, 

only Camera 1 in the Camera Selection Check Boxes remains enabled. This feature allows for a 

report to be generated for a single video.   

8a – Select Video File Button 
The Select Video File Button will open a dialog similar to the Select Directory Button. Instead of 

a folder, however, the users selects a single video file to run a report on.  

9 – Draw Trajectory Arrow Check Box 
Clicking Draw Trajectory Arrow Check Box will draw trajectory arrows on the report images for 

visualization.  

10 – Enter Start/Stop Time Edit Boxes 
These edit boxes allow the user to enter the start time and stop time for report generation.  

Pedestrian trajectories will only be reported and visualized for the time period between the start 

and end time as specified in the start and stop time edit boxes.   

11 – Report Type Buttons 
The Report Type Buttons select which type of report to run. For example, selecting the Pedestrian 

button will generate a Pedestrian report for the given Site ID. Only one type of report can be run 

at a time.  

12 – Save Pictures Check Box 
Clicking the Save Pictures Check Box saves individual trajectory images for each unique object. 

This feature should only be enabled for pedestrians and cyclists.  

13 – Generate Button 
The Generate Button will initiate the report generating algorithms on the selected video feeds via 

the Camera Selection Check Boxes.  Once processing has initiated, tracker results will be logged 

to the local database with the given Site ID.  Current processing time is 2-to-1, meaning for each 

hour of video data, it will take approximately 2 hours of processing time.  This time is faster if 

fewer cameras are selected for processing. 

14 – Stop Button 
This button will interrupt report generation. 
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15 – Exit Button 
This button will interrupt any ongoing report and quit the program.  If no generation is currently 

being performed, it will simply quit the program. 

Select Walking Direction Dialog 
This dialog is created when the user presses the Walking Direction Button (6) on the main User 

Interface. This dialog will load the image shown in the corresponding camera view and allow for 

selection of the direction of travel of pedestrians crossing the road. This is required to filter out 

invalid trajectories as a result of the tracking algorithms falsely identifying vehicles and tracking 

them. This is achieved by defining the slope of a line by selecting two points on the road in the 

direction of pedestrians crossing. Trajectories that are perpendicular to this slope will be rejected 

for reporting purposes. This effectively filters out the false trajectories due to vehicles. Figure 74 

shows the walking direction interface.  

 

Figure 74 – Select Walking Direction Interface and Buttons 
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1 – Apply Button 
This button will fill finalize the slope from the points selected by the user and return to the main 

dialog.  The User Interface will reflect the changes in slope mask in the camera view windows.  A 

sample of the user interface showing images with slopes ready for reporting is shown in Figure 

75. The slopes are shown as blue lines in the image. 

 

Figure 75 - Sample user interface with slopes 

2 – Undo Button 
This button will remove the last slope that was defined.  Use this if you are not happy with the 

current slope results.   

3 – Cancel Button 
This button will close the dialog and discard and changes.   

Steps for generating a report 
This section describes the steps necessary to load and process a video.   

1. Select the video file directory using the Select Directory Button (1), or alternately, load 

the individual images using the Load Background buttons for each camera (6) 

2. Enter the site ID using the Site ID Edit Box (2) 

3. Select the Cameras to process with the Camera Selection Check Boxes (4) 

4. Create the pedestrian crossing direction slope using the Road Direction Button (5).  See 

the Select Walking Direction Section below for details. 

5. Make sure the images are ready for processing by visualizing the slopes and images in 

the Camera View Windows (7) 

6. Enter the start and stop times in the edit boxes (8) 

7. Press the Generate Button (9) to start report generation. 
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Selecting the Walking Direction 
This section describes how to select the pedestrian crossing/walking direction for a camera to 

prepare for report generation.  The purpose of creating a slope for the crossing direction is 

foremost to filter out incorrect trajectories from vehicles travelling in the direction of traffic.  This 

section assumes you are already familiar with the dialog and the buttons as described above in 

this document. 

Selecting the walking direction requires selecting two points in each image to define the start and 

stop of a line in the direction of the pedestrian crossing.  If you make a mistake, you can always 

use the Undo Button (2). 

1) Using the mouse, create anchor points by clicking in the image where you want the start 

and stop points of the line to be. 

2) Once two points are selected, a line will automatically be drawn into the image indicating 

the selected crossing direction as shown below.  If the slope is incorrect, press the Undo 

button (2) to remove the slope and start over. Figure 76 shows the walking direction. 

 

Figure 76 - Drawing walking direction 

 

3) Click the Apply Button (1) to save the slope and apply it to the camera video stream.  

Once applied it will be immediately visible in the main user interface in Figure 77.  

 

Figure 77 - User interface with walking direction 

4) Click the Exit Button if you want to exit the dialog and discard the selected slope.  
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Playback Detection Tool Manual 

Pedestrian Playback Detection Tool 

Software Manual 

Description 
The pedestrian Playback Detection Tool is the program for viewing pedestrian or conflict 

detection. This program is designed to be run after completing analysis with the Report 

Generation Tool or Conflict Analysis Tool. See the Report Generation and Conflict Analysis 

Software Manual for details. This tool allows a user to specify the video directory, report 

directory, and jump to detections. This tool allows to jump to a detection directly in the video and 

watch it. This manual describes those processes in detail. Figure 78 shows the user interface. 

User Interface – Main Dialog 

 
Figure 78 - Playback Detection Interface 

 

1-Select Video Directory Button                                           5-Next Detection Button 

2-Select Report Directory Button                                         6-Jump to Detection Button 

3-Selected Camera Button                                                     7-Video and Report Directory  

4-Previous Detection Button                                                  8-Camera Video Window 
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1 – Select Video Directory 
Clicking the Select Video Button will open a dialog asking the user to select the directory 

containing the raw video data. Video files are located in a subfolder named after their site 

identifier (as assigned in the Video Recording Tool). Each camera has a subfolder containing 

their respective video files.  Please select the top level (Site ID) folder. For example, in the 

sample file structure in Figure 79, the top-level folder that should be selected is named ‘Site1’. 

Site identifier folder names will typically be numeric (example:  001, 002, 003, etc.). 

 

Figure 79 - Select directory 

Once selected, the dialog will automatically populate the Video Directory (7) for the selected 

directory. The dialog will throw an error if the video file structure is incorrect, or if video files are 

not located properly.   

2 – Select Report Directory 
Clicking the Select Report Directory Button will open a dialog asking the user to select the 

directory containing the report data. The report must be run on the correct video data, otherwise 

an error will occur. Once selected, the dialog will automatically populate the Report Directory (7) 

for the selected directory.    

3 – Selected Camera Button 
The Selected Camera Button allows users to choose what camera will be displayed in the Camera 

View (8). Once clicked, the Camera View (8) will populate with the feed. Figure 80 shows the 

populated Camera View feed.  

 

Figure 80 - Playback detection with video 
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4 – Previous Detection Button 
The Previous Detection Button jumps the previous detection. For example, if the current 

detection is 2/954, then clicking the Previous Detection Button will jump to 1/954. Additionally, 

the previous detection feature can be activated by typing “z” or “Z” on the keyboard.  

5 – Next Detection Button 
The Next Detection Button jumps forward to the next detection listed. For example, if the current 

detection is 1/954, clicking the Next Detection Button will jump to 2/954. Additionally, the next 

detection feature can be activating by hitting the spacebar on the keyboard.  

6 – Jump to Detection Button 
The Jump to Detection Button allows users to jump to any possible detection. For example, the 

current detection is 1/954, but the user wants to jump to 500. Rather than hitting spacebar 500 

times, the user types 500 in the input space above (6) and clicks the Jump to Detection Button.  

7 – Video and Report Directory 
The Video and Report Directory (7) show where the video and report directories are located, once 

selected, respectively. Additionally, once the Selected Camera (3) button is clicked, the Number 

of Detections and Number of Video files used is also displayed.  

8 – Camera View 
The Camera View displays the Selected Camera View’s videos being played.  

Steps for running Playback Detection 
This section describes the steps necessary use the Playback Detection Tool.    

1. Select the video file directory using the Select Video Directory Button (1). 

2. Select the report directory using the Select Report Directory Button (2). 

3. Select the camera to display using the Selected Camera Button (3). 

4. Use the Next Detection Button, Previous Detection Button, and Jump to Detection Button 

to jump through the detections.  

5. Select another camera using the Selected Camera Button (3) and repeat step 4.  
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Conflict Analysis Tool Manual 

Pedestrian Conflict Analysis Tool 

Software Manual 

Description 

The Conflict Analysis Tool is the program for identifying conflicts from the pedestrian tracking 

program.  This program is designed to be run after the Report Generation Tool. See the Report 

Generation Software Manual for details. This tool allows a user to specify the report folder, and 

outputs pedestrian-vehicle conflicts and statistics. This manual describes those processes in detail. 

Figure 81 shows the conflict shortcut which is on the desktop.  

User Interface – Main Dialog 

 

Figure 81 - Conflict tool shortcut 

 

Conflicts.bat - Shortcut 

Double clicking the Conflicts.bat-Shortcut located on the desktop begins the conflict analysis 

software. Double clicking shortcut opens a console terminal window and prompts the selection of 

a Report directory. 
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Select Report Directory 

 

Figure 82 - Select report directory 

Figure 82 shows the select the report directory which the conflict analysis will be run on. Once 

the Report folder is selected, the user will be prompted whether they want to analyze behind 

conflicts, and the conflict window to analyze.  
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Terminal Feedback 

 

Figure 83 - Terminal feedback 

While the conflict analysis is processing, the code provides feedback allows the user to 

understand what portion of the analysis is currently running. Figure 83 shows sample terminal 

feedback.  

Steps for running Conflict Analysis 

1. Double click the desktop file shortcut seen in Figure 81.  

2. Select the report directory to process on.  

3. Choose whether you want behind conflicts analyzed or not by typing “y” or “n” and 

hitting enter.  

4. Choose the cutoff times for behind and front conflicts by entering a positive number less 

than or equal to 10.  

5. Let the conflict analysis run. Depending on the length of the report, runtime may be 

significant. Check terminal feedback to see updates on the conflict process.  

The feedback in Figure 83 shows a sample analysis for conflicts between -3 and 3 seconds.  

Conflict Analysis Outputs 
The conflict analysis tool creates a Conflicts-all folder in the selected report directory, and the 

targeted conflicts as well. For example in the figure below, the Conflicts-all folder exists, and the 

Conflicts--5-5 is the analysis with all conflicts between -5 and 5 seconds. Creating and saving all 

conflicts allows for faster processing of different time thresholds. Figure 84 shows the sample 

folder outputs.  
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Figure 84 - Sample folder outputs 

Under the Conflict subfolder of the report, folders are created for each camera view. Each camera 

subfolder has detailed data for each camera view which is seen in Figure 85. Additionally, 

general conflict data is located in the .txt files in the main subdirectory.  

 

Figure 85 – Sample general conflict outputs 

 

Figure 86 - Sample camera outputs 

For each camera, the conflict analysis outputs an overall conflict plot, conflict stats graph, lists all 

conflicts in a csv file, and has each pedestrians' conflicts saved as an image. Figure 86 depicts a 

sample layout. Additionally, the coordinate.txt file is used for compatibility with the Playback 

Detection Tool.  
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Playback Detection Compatibility 

The Conflict Analysis Tool has automatic compatibility with the Playback Detection Tool. To 

jump to conflicts in the video, start the Playback Detection Tool and follow the user manual. The 

targeted conflicts folder (Conflicts--5-5) will only depicts conflicts between the cutoff points.  

 

 

Figure 87 - Playback detecttion compatibility 

When prompted to select a report directory in the Playback Detection Tool, select the Conflicts 

directory, seen in Figure 87, on the desired site. The Playback Detection Tool will now display 

the conflicts in video with the ability to jump to different conflicts. More information about the 

Playback Detection Tool is available in the Playback Detection Tool Manual.  
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Appendix 2 - Camera Calibration Technical Document 

Camera Calibration for 3D Coordinate Estimation 

1 - Problem description 

Currently, the pedestrian monitoring software looks for potential pedestrians from the camera 

feed, tracks them in the sequence of images and validates the detections according to some 

criteria to filter out false positives. This approach has two major deficiencies. One, the detections 

are done in images directly, without a notion of real world measurements and distances. This is 

not amenable to heuristics than can take advantage of real world position and speed of the 

detections, e.g., pedestrians tend to be much slower and smaller than vehicles. But currently, this 

information cannot be extracted just from the detected boundaries in images. Two, the lack of 3D 

information does not allow extrapolating the detected image positions to real world coordinates, 

which might be helpful for surveying. E.g., the object locations in the image cannot be used to 

determine the GPS location of that detection. Both problems can be addressed by carefully 

making use of the camera geometry.  The goal of this work is to be able to extract 3D position of 

objects in the camera view as illustrated in Figure 88. 

 

 

Figure 88 - Concept sketch showing detection of 3D coordinates of different objects on an undulated road from a 

single camera with respect to the world origin – center of camera wagon. Note all object coordinates could be 

augmented with global location 

2 – Camera Properties 

In this section, a detailed explanation of properties pertaining to cameras and their geometry is 

provided. This will be helpful to understand how 3D information can be obtained from 

monocular cameras. 

In practice, it is common to approximate camera models as either a pinhole camera or fisheye 

a camera. The latter approximates cameras with super wide field of views. Since the cameras that 

are used in the project operate between 50◦ to 5◦ field of view, we can use the pinhole camera 

approximation. 
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Figure 89 - Pinhole camera model (https://en.wikipedia.org/wiki/Pinhole_camera_ model) 

Figure 89 shows a tree projected on to the back of the pinhole camera, or the wall. This 

model can be extended to cameras with lens elements and camera sensor – focal length of the 

lens approximately equals the focal distance (distance between pinhole and the wall) and camera 

sensor/imager being equivalent to the wall. In general, pinhole camera model entails a projection 

of the scene on the camera imager according to following relation 

                                                          (1) 

where [X,Y,Z]T are coordinates of a point on an object with the center of camera as the origin, 

[x,y,1]T are coordinates of that point projected on the camera sensor virtual plane (note, the 

“virtual plane” is just a mathematical convenience. In reality, the image forms at [−x,−y,1]T,) and 

K is often called the camera instrinsic matrix, and captures focal length of camera and the offset 

of camera sensor. It is given by 

 

 
 

As it is apparent from 1, the camera projection is a nonlinear transform, solely due to the 

scaling provided by distance of the object. Intuitively this transformation makes farther objects 

appear small and nearer objects appear big, with some scaling provided by the focal length. With 

bigger focal lengths (or more zoom,) farther objects can be scaled up in size and vice versa. 

 
Figure 90 - Two Types of distortion. Courtesy: A. Kaehler, G. Bradski, Learning OpenCV 3 

(a) Radial distortion: rays farther from the center of a simple lens are bent too much compared to 

(b) Tangential distortion results when the rays that pass closer to the center lens is not fully 

parallel to the image plane (Figure 90). 
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     The pinhole camera model helps finding the points on camera sensor that correspond to points 

in the world. However, to improve accuracy, it is worthy to resolve for distortions introduced by 

the camera lens. For the cameras used in the project, two types of distortions can be prominent: 

radial distortion and tangential distortion. Radial distortion (Figure 90 left side) introduces 

artifacts that are more prominent in the edges of the images – straight lines tend to bow out. 

Tangential distortion (Figure 90 right side) on the other hand might result out of inaccuracies in 

mounting of the camera sensor with respect to the lens. 

     Due to the distortions, the image coordinates from 1 can be corrected by the following 

relations 

xcorrected = x(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2x2)      (2) (2) 

ycorrected = y(1 + k1r2 + k2r4 + k3r6) + 2p2xy + p1(r2 + 2y2)      (3) (3) 

 

where, the first term in 2 and 3 correspond to the correction due to radial distortion with three 

parameters k1,k2,k3 and the latter terms correspond to that due to tangential with two parameters 

p1,p2; r is the radius from the intersection of optical axis on the imager; and [xcorrected, ycorrected]
T 

being the corrected coordinates for the image coordinates [x,y]T from the matrix (1). 

    Finally, the cameras in the project can be expected to be mounted on a camera wagon or lamp 

post and it would be more meaningful to see relation between coordinates on the ground with 

reference to a fixed point on the ground, e.g., base of a lamp post, as opposed to relations with the 

camera origin. In other words, a fixed world coordinate system is more desirable to reference 

objects on the ground than the camera itself, which could either move or be present at an 

inconvenient location to measure from. So, a rigid transformation between camera and world 

origin can be introduced with the following modification to matrix (1) 

 

 
where R and t constitute the rotation and translation respectively that defines the rigid 

transformation between world and camera origin. Notice that the coordinates in the world is 

appended with 1, but this is just a notational convenience, to combine R, t in the same matrix. 

Also note that scaling factor has changed to s from Z in (1). 

 

3- Camera Calibration 

Calibrating the camera fully to obtain a total of 15 camera parameters can be divided into two 

stages – Intrinsic calibration and extrinsic calibration. 

3.1 – Intrinsic Calibration 

On the one hand, typically camera manufacturer’s supply some intrinsic calibration information, 

such as the focal length and sensor offset (if any). For the AXIS Q6045-E cameras used in the 

project, the focal length range is specified but a one-to-one mapping between zoom level and 

focal length is not. In addition, the sensor size or pixel pitch is not exactly specified, to calculate 

the focal length in pixels (instead of m). This is important since image coordinates are used in 

pixels and not any other standard unit. On the other hand, the distortion parameters are rarely 
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manufacturer specified, except for high precision cameras and since distortion can vary from 

camera to camera and lens assembly and setting, it would be prudent to calculate the distortion 

parameters on a case-by-case basis. Hence, all 9 intrinsic calibration parameters must be jointly 

estimated for the current project. 

The calibration marker pattern in Figure 91, printed on to a board, should be shown in front 

of the camera over several image frames with different orientations. Make sure to impress views 

from all possible regions of the field of view, at different distances and different tilts. Note, this 

procedure should be done off site with each different camera used in the project, preferably with 

a selected zoom level. Changing zoom level on site can be adjusted with a look up table for the 

focal length parameter, but the distortion parameters might change due to presence of multiple 

lens elements. 

 
Figure 91 - Calibration Marker Board 

The intrinsic parameters are found in two stages. In the first, it is assumed there is no lens 

distortion and the homography matrix for each view is found. The homography matrix arises 

from the fact that calibration marker pattern is flat and so is the camera sensor. Thus, relating 

object coordinates of calibration board to image coordinates should be a one-to-one mapping 

between two planes oriented at two different angles. In other words, 4 modifies to 

 

where Z = 0 for all views of the marker board (the object) and r1,r2 are the first two columns of 

rotation matrix R. This can be further simplified as a homography transformation 

                                                              (6)   
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Note, the homography matrix H here includes the scaling . Although H is 3 × 3 matrix, there are 

only 8 degrees of freedom for a homography and thus, ideally the matrix per view can be found 

by using 4 points (or 4 corners of a square) from the calibration pattern. But, more corners – 4 

corners from each square – are used to reduce noise (even due to no distortion assumption) and 

obtain a least squares solution.    

Next, to decompose the camera matrix K and rotation and translation from calibration board 

to camera origin R|t from H as in 5, we will need at least two views since H will have estimated 8 

parameters, but we need to find total 10 parameters – 4 fixed intrinsic parameters (fx,fy,cx,cy) and 

6 extrinsic parameters (roll, pitch, yaw and tx,ty,tz) that change for each view. Again, as above, 

more than 2 views – at least, 10 different views – are required to find a least squares solution, that 

will minimize effects of noise and assumptions. For further details about compiling homography 

matrices and decomposing them to solve for a camera matrix K and several rotations and 

translations can be found in [2]. 

In the second stage of intrinsic calibration, the distortion parameters are solved. Since the 

fx,fy,cx,cy are obtained from K matrix, and a bunch of calibration pattern corners in the world in 

camera coordinates are known, we can estimate the “true” locations of projections as 

xprojected = xcorrected  (7)  

yprojected = ycorrected  (8) 

where Xw,Yw,Zw are coordinates of the corners in camera coordinate system. The image 

coordinates of the corners detected at the start of previous stage [x,y]T must correspond to the 

[xprojected,yprojected]
T with slight distortions. Thus, a huge system of equations can be solved to find 

the distortion parameters in 2 and 3. More details about solving this system of equations can be 

found in [1]. Finally, the distortion parameters found after solving, viz., k1,k2,k3,p1,p2 can be used 

to re-solve fx,fy,cx,cy in the first stage1. 

3.2 Extrinsic Calibration 

Extrinsic calibration involves finding 6 parameters, viz., rotation – roll, pitch and yaw; and 

translation – tx,ty,tz that can relate camera’s origin to the “world” origin. For the purposes of this 

project, origin of the world can be regarded as any fixed, e.g., base of the camera wagon or lamp 

post, center of the UTM zone, center of the earth etc. For simplicity, the base of the camera 

wagon – projection of center of the pole on to the ground – is taken as the origin. A larger sized 

calibration board resembling Figure 91 above needs to be printed out and placed at some location 

visible to the camera. For wide views, the calibration pattern can be laid flat on the ground, but 

for very high zooms, it might be worthy to place the calibration pattern perpendicular to the 

ground with a strong mount. A single image can then be used to calculate the position of the 

calibration board with respect to the camera accurately, given good intrinsic calibration. That is, 

after finding all mentioned intrinsic parameters, 4 becomes 
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where U() is an undistort function realizing 2, 3, and K the camera matrix. The parameters 

required for the above is found with intrinsic calibration, and so, the parameters that compose 

Randt needs to be calculated.  is directly dependent on the same parameters, and hence doesn’t 

need to be explicitly solved. 

     Given the corners of each square from the calibration pattern [X,Y,Z]T, and the corresponding 

corrected image coordinates [xcorrected,ycorrected]
T, a nonlinear least squares optimization needs to be 

setup that minimizes the reprojection error. It is nonlinear in nature because parameters of the 

rotation matrix R are inherently dependent on nonlinear transformation, for instance 

trigonometric relations. Reprojection error is the deviation of projected corners of squares from 

the detected corner points. Note, only a single view of the calibration pattern is required for 

extrinsic calibration since only 6 parameters are estimated while the number of corner points 

available from calibration pattern makes system sufficiently overdetermined. Solving this yields 

the transformation with rotation C
BR, which signifies rotation from Calibration board to camera; 

and translation CBt from Calibration board to camera. To complete, the reference with respect to 

world “origin”, the transformation between calibration pattern/board to world needs to be 

specified. In the easiest case, where calibration pattern is laid flat on the ground, the rotation 

from world to board, BWR is the identity matrix I and the same for translation, , will be of the 

form [distx,disty,0]T. distx,disty specify the distance of the calibration board in length and width 

from the world “origin”, i.e., base of the camera wagon. 

 

4 – Road Surface Topology 
 

In a monocular camera, 3D information of the world is projected down to a 2D camera sensor. 

Therefore, in principle, it is not possible to recover lost information from image coordinates. But, 

since in this project, we are mostly interested in pedestrians and other objects on the road, we can 

take advantage of that geometry. Light rays reflecting off road surface, which doesn’t necessarily 

need to be flat, fall on the camera sensor only at a particular location. In other words, there exists 

a one-to-one mapping between every point on the road visible to the camera (doesn’t include 

occlusions) the camera sensor surface. Although, in practice, the one-to-one mapping doesn’t 

perfectly hold due to quantization, or camera resolution, the correspondences work for the most 

part. So, if the topology of the road can be determined somehow, 3D locations of detections can 

be found by inverting the operation performed in 4. The inverted expression, written in a slightly 

different manner (splitting R|t matrix,) becomes 

 

                          (10) 

It is worthy to note that in 4 describes the projection operation up to a particular scale, which 

warrants the term . The constraints introduced by specifying the road topology essentially helps 

fix this scale. To see this, the simplest topology of the road can be examined – flat. In some 
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sense, this has already been visited before, in intrinsic calibration. Particularly, 5 describes a 

homography, relating flat calibration pattern to flat camera sensor. Similarly, if the road is 

assumed to be flat, with the world origin on the ground, this making all Z coordinates equal zero, 

10 simplifies to 

 

 
 

which implies, the scaling can be easily found out by using the last equation of this system of 

equations. That is, 

              (11) 

where rij are the elements of the R matrix, ti are elements of the translation vector t and fx,fy,cx,cy 

are elements of the intrinsic calibration matrix K. Note in the above relations, the terms due to 

distortions are intentionally left out for brevity. In practice, [x,y]T should be equivalent to the 

“undistorted” image coordinates [xcorrected,ycorrected]
T. 

In the above example, it is hinted that scaling s is a function of image coordinates, f(x,y). This 

is true in the general case of arbitrary road topology too. That is, if the road surface is 

parameterized as an arbitrary continuous function in X,Y,Z, surf1(X,Y,Z) : R3 → {0,1}, where 1 

corresponds to presence of surface, then this can be used as additional set of equations to solve 

for s, which would be eventually a function of x and y. Another, perhaps easier way of 

parameterizing the general road surface is with a continuous function that maps each X,Y to a 

height value. This bears resemblance to a topological map. That is, surf2(X,Y ) : R2 → R. Then, 

solving for 3 unknowns X,Y and s with 3 equations. 

Finally, yet another way to parameterize road surface is with a look-up table. This might be 

more suitable for arbitrarily complex road surfaces, or for which finding a “surf” function might 

be hard, but yet maintain a fixed size look-up table. Since, the camera image sensor is quantized 

into a limited number of (usually square) pixels, each ray back traced from the sensor can belong 

to some quadrilateral projected on to the road surface. Thus, any object (or part of an object) 

present within this area will appear to be at the same [x,y]T location. This implies that if the 

camera is viewing some scene with a perspective (as opposed to straight on to the road,) rough 

measurements of the surface topology, farther away from the camera can be forgiving. If some 

smoothness constraints can be made with this strategy, then the samples of surface measurements 

can be farther apart, moving away from the camera. An example of this is shown in Figure 92.  
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Figure 92 -  Sketch of a road surface with a camera viewing down the road. For sufficiently smooth roads, the 

surface topology can be interpolated from samples (pink), and the samples be made farther apart, farther away 

from the camera. on to the camera sensor with a set camera calibration, using the “forward” transform. 

 

Note, unlike in 4, the scaling factor s is estimated for each of the surface samples. A look up table 

can then be made for each x,y interpolating the samples obtained in this step, ending up with x × 

y entries. Also note, the look-up table makes the idea that s = f(x,y) more solid. A potential pitfall 

to this approach however is that samples from the road surface can be obtained inadvertently that 

are occluded by the road (such as the samples to the farthest right in Figure 92). However, the 

look-up table can be adjusted to store interpolated scaling values for those points that satisfy 

minimum Euclidean distance in camera frame. That is, for each [x,y]T in look-up table, store 

minP(sx)2+(sy)2+s2. 

 

5 – Field testing 

Field tests could be done to validate the above derived relations. It is prudent to try field tests at 

an intersection first since, extrinsic calibration should be easiest for views that are near to camera 

and also to demonstrate the capability of detecting and tracking traffic/pedestrians from different 

direction. Some of the steps below are reiterating the procedures explained in sections above. 

Intrinsic calibration Set the zoom level of the camera off-site. For example, if it is known that 

the camera wagon will be placed at the corner of an intersection, the zoom level will usually be 

the lowest setting. Then, after initiating the intrinsic calibration routine, the calibration marker 
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board must be shown in various different orientations and distances to the camera. It might be 

helpful to use a monitor to make sure almost all areas of the field of view is covered during this 

procedure. Figure 93 illustrates a typical sequence of actions needed for this. Finally, the intrinsic 

calibration software must be signaled the end of the calibration images input, which will result in 

the software calculating the calibration parameters. If the number of images are not sufficient, the 

software will indicate. If the zoom level is uncertain for a particular site, the intrinsic calibration 

could be stored for every zoom level of a camera and retrieved based on the setting chosen on-

site. 

 

 

Figure 93 - Typical sequence of images of calibration pattern held at different orientations for intrinsic 

calibration. Courtesy: A. Kaehler, G. Bradski, Learning OpenCV 3 

Extrinsic calibration First, establish a “world origin” for the cameras in the field, and make a 

note of the X,Y and Z axes. Typically, the base of the camera pole projected on to the ground 

would be the easiest. Optionally, take the GPS coordinates (position) and orientation (heading) of 

this “origin”. Then, setup the camera height and field of view by adjusting tilt and pan controls 

on-site. Then, place the extrinsic calibration marker pattern flat on the road within view of the 

camera. Measure the distances X and Y of the top-left corner of the marker board to the “world 

origin”. Initiate the extrinsic calibration software, and feed the position of the marker board. The 

software must then take an image of the scene and process the camera’s position and orientation 

with respect to the “world origin”. 

Standard procedure Start recording videos from the field. With the knowledge of calibration, 

the rest of the tools developed previously should be able to augment pixel position of objects to 

3D information, and if, GPS location of the camera wagon is available, show and plot pedestrian 

trajectories on a map software or a bird’s eye view visualization of the intersection. 

6 – Conclusion 
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In this reading, we have derived a concept to improve the current tools available for pedestrian 

detection project with 3D information, and hence the capability to find GPS coordinates of each 

detected object on the road. To accomplish this, the cameras must be calibrated with a two-step 

process – intrinsic calibration to find parameters specific to each camera, and extrinsic calibration 

to find location of camera with respect to the road. The former maybe performed only once for 

each camera, while the latter needs to be performed every time the camera is moved from its site. 

We have also detailed the procedure to retrieve 3D coordinates of objects on road surfaces with 

arbitrary topology. Finally, the immediate next steps to validate these procedures in the field has 

been detailed. 
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Appendix 3 – Camera Intrinsic Parameters Technical Document 

Camera Instrinsics vs. Focal Length Analysis 

This analysis is conducted to see variation of camera intrinsic parameters with various focal lengths. It 

is also aimed to see the correlation between AXIS Q-6045E API returned zoom level and focal 

length, if any straight relationship exists. 

Videos for intrinsic calibration were taken at four zoom levels: 

• z1=162z1=162  

• z2=1001z2=1001  

• z3=4200z3=4200  

• z4=9999z4=9999 (Digital zoom) 

Snapshots were taken from each videos and stored in focal_length_*_images/. The script 

find_intrinsics.py found intrinsics for four scenarios 

In [1]: 

from utils.config import LoadConfig 

 

# Load calculated params 

f1 = LoadConfig('focal_length_1_intrinsics.npz').load() 

f2 = LoadConfig('focal_length_2_intrinsics.npz').load() 

f3 = LoadConfig('focal_length_3_intrinsics.npz').load() 

f4 = LoadConfig('focal_length_4_intrinsics.npz').load() 

In [2]: 

# Zoom levels 

z1 = 162 

z2 = 1001 

z3 = 4200 

z4 = 9999 

In [3]: 

# Average fx and fy 

fs = [(f1['camera_matrix'][0, 0] + f1['camera_matrix'][1, 1]) / 2, (f2['camera_matrix'][0, 0] + f2['camera_matrix'][1, 1]) /

 2, (f3['camera_matrix'][0, 0] + f3['camera_matrix'][1, 1]) / 2, (f4['camera_matrix'][0, 0] + f4['camera_matrix'][1, 1]) / 2

] 
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zs = [z1, z2, z3, z4] 

In [4]: 

# Plot focal lengths 

import matplotlib.pyplot as plt 

 

fig, ax = plt.subplots(1, 2, figsize=(20, 8)) 

ax[0].plot(fs) 

ax[0].set_title('Calculated focal length in pixel') 

ax[1].plot(zs) 

ax[1].set_title('Zoom level') 

plt.show() 

<Figure size 2000x800 with 2 Axes> 

The trend is somewhat similar but digital zoom is perhaps causing error with focal length calculation. 

Let's see principal points for different zooms 

In [5]: 

cxs = [f1['camera_matrix'][0, 2], f2['camera_matrix'][0, 2], f3['camera_matrix'][0, 2], f4['camera_matrix'][0, 2]] 

cys = [f1['camera_matrix'][1, 2], f2['camera_matrix'][1, 2], f3['camera_matrix'][1, 2], f4['camera_matrix'][1, 2]] 

 

fig, ax = plt.subplots(1, 2, figsize=(20, 8)) 

ax[0].plot(cxs) 

ax[0].set_title('$c_x$ for different zoom levels') 

ax[1].plot(cys) 

ax[1].set_title('$c_y$ for different zoom levels') 

plt.show() 
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Ideally, all principal point calculations should be approximately equal. unfortunately, digital zoom has 

completely messed with the last intrinsic calibration. Ignoring the last zoom level then 

In [6]: 

# Plot focal lengths again for first 3 zoom levels 

fig, ax = plt.subplots(1, 2, figsize=(20, 8)) 

ax[0].plot(fs[:3]) 

ax[0].set_title('Calculated focal length in pixel') 

ax[1].plot(zs[:3]) 

ax[1].set_title('Zoom level') 

plt.show() 

 

The correlation looks more reasonable. Let's see differences: 
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In [7]: 

import numpy as np 

diff_f_z = np.array(fs[:3]) - np.array(zs[:3]) 

print(diff_f_z) 

The relation looks linear. Let's find the parameters We have three equations of the form 

zi=s∗fi+ozi=s∗fi+o , where zizi is zoom level, fifi is measured focal length in px, ss is a scale and oo 

is an offset. 

In [8]: 

zis = np.array(zs[:3]) 

 

# x_i = [f_i, 1]^T --> Absorbing the offset into one matrix 

xis = np.vstack((np.array(fs[:3]), np.array([1, 1, 1]))).T 

 

scale, offset = np.dot(np.linalg.pinv(xis), zis) 

print('Scale = {}, Offset = {} to go from focal length to zoom level'.format(scale, offset)) 

Scale = 0.3571610356537485, Offset = -269.11190214274563 to go from focal length to zoom level 

Let's see how accurate the model is 

In [9]: 

fig, ax = plt.subplots(figsize=(10, 8)) 

ax.plot(zis, c='r', label='True zoom levels') 

ax.plot(np.array(fs[:3]) * scale + offset, c='g', label='Predicted zoom levels') 

ax.legend() 

plt.show() 
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Great! Looks we can take a bunch of calibration from different focal lengths, and obtain a slightly 

more accurate model for zoom level --> focal length relation. That is, fi=zi−osfi=zi−os. Hopefully the 

modeled parameters doesn't change between cameras. 

Now let's see variation in distortion parameters for different zoom levels 

In [10]: 

k1s = [f1['dist_coeffs'][0, 0], f2['dist_coeffs'][0, 0], f3['dist_coeffs'][0, 0]] 

k2s = [f1['dist_coeffs'][0, 1], f2['dist_coeffs'][0, 1], f3['dist_coeffs'][0, 1]] 

k3s = [f1['dist_coeffs'][0, 4], f2['dist_coeffs'][0, 4], f3['dist_coeffs'][0, 4]] 

 

p1s = [f1['dist_coeffs'][0, 2], f2['dist_coeffs'][0, 2], f3['dist_coeffs'][0, 2]] 

p2s = [f1['dist_coeffs'][0, 3], f2['dist_coeffs'][0, 3], f3['dist_coeffs'][0, 3]] 

In [11]: 

# Radial distortion 

fig, ax = plt.subplots(1, 3, figsize=(20, 8)) 

ax[0].plot(k1s) 

ax[0].set_title('$k_1$') 

ax[1].plot(k2s) 

ax[1].set_title('$k_2$') 
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ax[2].plot(k3s) 

ax[2].set_title('$k_3$') 

plt.show() 

 

They should ideally be relatively equal for different zoom levels. Unexpectedly, there's huge variation 

in k2k2. 

In [12]: 

# Tangential distortion 

fig, ax = plt.subplots(1, 2, figsize=(20*2//3, 8)) 

ax[0].plot(p1s) 

ax[0].set_title('$p_1$') 

ax[1].plot(p2s) 

ax[1].set_title('$p_2$') 

plt.show() 
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Tangential distortion is OK. These parameters could probably be ignored altogether. 

NOTE: Further investigation required for radial distortion parameters. 

Conclusion 

It appears we can find a meaningful relation between cameras API returned zoom levels and focal 

length, conditional on gathering more data so that error can be reduced. The variation in radial 

distortion however needs to be investigated. Particularly, if k2k2 has minimal effect on un-distortion. 
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Appendix 4 – Literature Review Summary 

Recommendation Section:  

 

For the purposes of pedestrian-vehicle interaction, Post-Encroachment Time will be the best 

measure. Getting vehicle speed and trajectories will also be important for a more robust measure 

of pedestrian-vehicle interaction. Midblock specific items to consider would be the pedestrian 

dwell time on the sidewalk before beginning to cross the road, and whether a pedestrian stops in 

the middle of the road or uses a rolling gap crossing strategy.  

For signalized intersections, additional information to consider would be adherence to traffic 

laws. Are pedestrians and cars obeying signals? Pedestrian dwell time would also be important to 

understand pedestrian behavior.  

The following literature review includes summaries of studies on automated processing, 

pedestrian behavior, calibration, and surrogate safety measures.  

Title: Automated Analysis of Pedestrian-Vehicle Conflicts Using Video Data1 

https://journals.sagepub.com/doi/pdf/10.3141/2140-05 

Summary: 

Traffic conflict techniques (TCTs) more important at predicting safety than collision-based 

measures. Manual data collection expensive and intense. Important Event defined as: “any event 

that involves a crossing pedestrian and a conflicting vehicle in which there exists a conceivable 

chain of events that could lead to a collision between these road users” 

Conflict indicators include:  

1. Time-to-collision (TTC) defined as “the time that remains until a collision between two 

vehicles would have occurred if the collision course and speed difference are 

maintained”; drawback included the large amount of extrapolation and field work.  

 

2. Post encroachment time (PET): time difference between the moment an offending road 

user leaves an area of potential collision and the moment of arrival of a conflicted road 

user possessing the right-of-way 

 

3. Gap Time (GT): variation on PET that is calculated at each instant by projecting the 

movement of the interacting road users in space and time 

 

4. Deceleration-to-safety time (DST): the necessary deceleration to reach a nonnegative 

PET value if the movements of the conflicting road users remain unchanged 

 

DST and TTC have underlying assumptions based on vehicle speed that may be inaccurate or 

unreliable. PET was the most reliable, however, fails to accurately represent a close call with a 

car having to completely stop. Combination of measures provided most reliable at capturing 

conflicts.  

Calibration notes:  

Calibration composed of 22 points form selected salient features in the traffic scene. 

https://journals.sagepub.com/doi/pdf/10.3141/2140-05
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The world coordinates of the calibration points were collected from an orthographic image of the 

location obtained from Google Maps. The intrinsic parameter considered in this study is the 

camera focal length. The mapping in Equation 1 imposes a reduction in dimensionality due to the 

projection onto a plane. The inverse projection is defined only if one of the world coordinates, or 

a relationship thereof, is known. In the current application, image plane coordinates are re-

projected onto the road surface, that is, the plane Z = 0. 

Similar studies used artificial construction of an orthographic image by using video image 

rectification. Used feature tracking and grouping. Two important parameters D(connection) and 

D(segmentation).  Used overhead video, so would likely be easier to project 

Algorithm for Calculating Conflict Indicators for Pedestrian–Vehicle Event: section which has 

the formulas to calculate multiple indicators.  

Some issues with TTC because severe events may not be on a “collision” course. TTC 

overestimates conflicts. PET was most reliable parameter, but has some inherent drawbacks with 

severity (ie, when a vehicle comes to a complete stop, then goes shortly after a pedestrian would 

walk) 

Title: The development of an automatic method of safety monitoring at Pelican crossings2 

https://doi.org/10.1016/j.aap.2005.04.012 

Summary: Most driver non-compliance occurs during flashing amber period, and other key 

conflicts were with pedestrians and the driver green phase likely due to delays pedestrians were 

experiencing. To avoid conflict most drivers would decelerate while some would decelerate and 

swerve.  

Results show that deceleration rates are a valid safety indicator. Deceleration of 6 m/s^2 is 

deemed a serious conflict. Deceleration of 4.5 m/s^2 is a slight severity of conflict. And 

deceleration of 3 m/s^2 is a potential conflict. These deceleration rates correspond to time to 

accident of 1.6, 1.8, and 2, respectively. Used loop detectors to get speed of vehicles and combine 

it with pedestrian data.  

Calibration and Trajectory Data: Data from video transcribed using VIDS and PROGRESS 

programs. Used pneumonic loops in 3 different configurations to get vehicle speed and 

deceleration rates.  

Used formerly logged deceleration data, while also having multiple different loops set up 

Title: Automated safety diagnosis of vehicle–bicycle interactions using computer vision 

analysis3 

https://www.sciencedirect.com/science/article/pii/S0925753513001240#b0150 

Summary: Discusses automated analysis for bike-vehicle conflicts at a troubled intersection. Used 

TTC as the vehicle conflict measure. They used TTC in a probabilistic terms rather than 

deterministic and also considered events that had a collision course for part of the time versus all 

the time. Cut off of TTC min 3 s or less. 

Calibration and Tracking Methodology: Used Kanade–Lucas–Tomasi Feature Tracker algorithm. 

Each calibration process begins with the user annotating features in the camera image and in an 

aerial, orthographic image of the intersection. 

https://doi.org/10.1016/j.aap.2005.04.012
https://www.sciencedirect.com/science/article/pii/S0925753513001240#b0150
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Title: Automated Detection of Spatial Traffic Violations through use of Video Sensors4 

https://journals.sagepub.com/doi/abs/10.3141/2241-10  

Summary: Able to detect certain traffic violations automatically using video detection. Could be 

used as a surrogate measure for safety.  

Calibration and Tracking: Used k-means clustering and pattern matching using the longest 

common sequence similarity measure (LCSS). Used same calibration procedure as a previous 

study they conducted. 

Title: Automated video analysis as a tool for analyzing road user behavior5  

https://portal.research.lu.se/portal/files/5708522/1032713.pdf 

Summary: 

Distances between objects from camera is difficult. Camera high above an intersection is an ideal 

location, but impractical. Cameras could be mounted on buildings and users can be projected 

using rectification. Also discusses using two cameras and an epipolar line to transform 3D 

coordinates into 2D.  

Overestimation of derivative values is a problem. “To overcome these problems we used local 

kernel polynomial regression algorithm ([6]). One advantage of this method is that the size of the 

bandwidth is an adjustable parameter, calculated dynamically depending on the data character in 

the current region. The other advantage is that the method allows separate estimation of the 

derivatives directly from the raw data.” 

Also discusses speed estimation using displacement between frames. “To do that the image is 

interpreted as a sampled version of a two dimensional function. According to the sampling 

theorem it is possible to reconstruct the original function as it was before the sampling by using 

sinc-interpolation between the sample points (pixels). This assumes that the original function 

contains no frequencies higher than half the sampling frequency, which is usually guaranteed by 

the optical properties of the camera lens.” 

Based on a previous study, jerk may be a better indicator of conflict severity than acceleration / 

deceleration rates.  

Title: Analyses of pedestrian behavior on mid-block unsignalized crosswalk comparing 

Chinese and German cases6  

https://journals.sagepub.com/doi/full/10.1177/1687814015610468 

Summary: Pedestrian behavior in China and Germany is significantly different. In Germany, most 

pedestrians will begin crossing with the first car gap they see, exact opposite in China. Most wait 

for the entire platoon to finish before crossing.  

Title: An accident waiting to happen: a spatial approach to proactive pedestrian planning7  

https://www.sciencedirect.com/science/article/pii/S0001457502001495 

Summary: Research supports Risk Homeostasis Theory where people target a level of risk that 

maximizes difference between perceived benefits and costs of a choice. Differences exist between 

perceived safety and number of crashes for UNC Chapel Hill.  

https://journals.sagepub.com/doi/abs/10.3141/2241-10
https://portal.research.lu.se/portal/files/5708522/1032713.pdf
https://journals.sagepub.com/doi/full/10.1177/1687814015610468
https://www.sciencedirect.com/science/article/pii/S0001457502001495
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Title: Features of Pedestrian Behavior in Car-to-Pedestrian Contact Situations in Near-

Miss Incidents in Japan8 

https://doi.org/10.1080/15389588.2013.796372 

Summary: Difference exists between Vehicle TTC and pedestrian TTV (time to vehicle). TTC 

depends on the amount of obstruction to the pedestrian. The shortest was when pedestrians 

moved out from vehicles in the other lane. Uses data and video feeds from cameras installed in 

taxis in Japan. TTV was lower in situations without crosswalks than those with crosswalks.  

Had two classifications of pedestrians: unobstructed and obstructed. Obstructed was further 

broken down into 3 categories from behind a building, parked car, and moving car.  

Title: Behavioral Issues in Pedestrian Speed Choice and Street Crossing Behaviour: A 

Review9 

https://doi.org/10.1080/01441640701365239 

Summary: Studies in the literature review showed that pedestrian speeds vary depending on 

crossing with the lowest being Zebra crossings, then pedestrian refuge, then pelican crossings, 

and the highest at random crossings. Delay was lowest at Zebra crossings, then random crossings, 

pedestrian refuges and the highest at pelican crossings. (Pelican crossings are primarily used in 

the UK, but are similar to HAWK signals. This suggests less risk is associated with slower 

speeds. 

Pedestrian speed choice is also associated with the vehicle gaps. Different age groups accept 

different gaps.  

Title: Probabilistic Framework for Automated Analysis of Exposure to Road Collisions10 

https://journals.sagepub.com/doi/10.3141/2083-11 

Summary: “Users are on a collision course when, “unless the speed and/or the direction of the 

road users changes, they will collide.” Scandinavian countries use safety hierarchy when defining 

road safety with collisions at the top.” “Among TCTs, the Swedish one is among the best known 

and is still being actively used for everyday safety assessments. It relies on the time to accident 

(TA), defined as “the time that is remaining from when the evasive action is taken until the 

collision would have occurred if the road users had continued with unchanged speeds and 

directions. Its value can be calculated based on the estimates of the distance to the potential point 

of collision and the speed when the evasive action is taken”” 

Provides formulas used for Collision Probability for two road users and three road users. Also 

defines methodology to define probability over a given time. Two major parameters: Conflicting 

Speed (CS): “speed of the road user taking evasive action, for whom the TA value is estimated, at 

the moment just before the start of the evasive action.” Time to Accident (TA): “time that 

remains to a crash from the moment that one of the road users starts an evasive action if they had 

continued with unchanged speeds and directions.” 

Goes through formulas for how they calculated probability of collisions in the methodology 

section.  

Video Processing: Uses an Image Sequence, Trajectory Database, and an Interaction Database. 

Algorithm relies on world coordinates through the estimation of the homography matrix. “The 

https://doi.org/10.1080/15389588.2013.796372
https://doi.org/10.1080/01441640701365239
https://journals.sagepub.com/doi/10.3141/2083-11
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motion pattern probabilities are computed by matching all trajectories over a given period 

through LCSS and can be updated continuously in a real-time application as traffic patterns 

change in time. When one computes the collision probability, the partial trajectories of each 

considered road user at each time are matched against the set of learned prototypes through 

LCSS.” 

Title: Estimating the severity of safety related behavior11 

https://www.sciencedirect.com/science/article/pii/S0001457505001818 

Summary: Uses hierarchy to define road conflicts. A serious conflict is a situation where no one 

puts themselves in deliberately. Found that events at the highest severities in regards to pedestrian 

vehicle conflicts occur more frequently at signalized than non-signalized intersections. Those 

events of fairly high severities are the “predominant behaviour at the non-signalised intersection, 

while there are no crashes or serious conflicts. At the signalised intersection on the other hand, 

those interactions with fairly high severity do not seem to exist while crashes do.” Belief from the 

authors suggest that these “high severity” events are positive “because they are frequent and 

severe enough to produce efficient feedback to the involved road users, but not severe enough to 

result in crashes.” 

Author also believes that a higher frequency of lower severities may not necessarily indicate high 

levels of safety since road users may not be prepared for events of higher severities and are 

likelier to end in a collision.   

Title: Methodology for Evaluating the Safety of Midblock Pedestrian Crossings12 

https://journals.sagepub.com/doi/abs/10.3141/1828-09 

Summary: MBPCs are more dangerous crossings for pedestrians. Especially with darkness and 

alcohol. In Las Vegas, the MBPC spiked 150 feet from the nearest intersection.  

Title: Methodologies for Aggregating Traffic Conflict Indicators13 

http://n.saunier.free.fr/saunier/stock/ismail11safety-index.pdf 

Summary: PET is a better indicator for representing severity of crossing events. Spatial proximity 

for pedestrians were chosen to be 10 m. A case study with a pedestrian scramble significantly 

reduced pedestrian vehicle conflicts. “The proposed safety measure is based on normalizing the 

summation of all severity indices by the maximum possible exposure.”  

Title: Illegal mid-block pedestrian crossings in China: gap acceptance, conflict and crossing 

path analysis14 

https://www.tandfonline.com/doi/full/10.1080/17457300.2011.628751?scroll=top&needAccess=t

rue 

Summary: From previous study, pedestrians crossing multiple lanes will not wait for all lanes to 

clear, rather a “rolling-gap”. Pedestrians classified as law abiding or opportunistic. Results 

showed most significant illegal occurrences occurred when the legal walking distance was 5 

times the illegal one.  

Title: Development of a Conflict Technique for Pedestrian Crossings15 

http://onlinepubs.trb.org/Onlinepubs/trr/1980/743/743-003.pdf 

https://www.sciencedirect.com/science/article/pii/S0001457505001818
https://journals.sagepub.com/doi/abs/10.3141/1828-09
http://n.saunier.free.fr/saunier/stock/ismail11safety-index.pdf
https://www.tandfonline.com/doi/full/10.1080/17457300.2011.628751?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/17457300.2011.628751?scroll=top&needAccess=true
http://onlinepubs.trb.org/Onlinepubs/trr/1980/743/743-003.pdf
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Summary: 

Conflict Definitions: 

1. Slow or Weave for Walking Pedestrian: Occurs at when pedestrian is walking and occurs 

right angles 

2. Slow or Weave for Running Pedestrian: Occurs at when pedestrian is running and occurs 

right angles 

3. Pedestrian Walking or Running in the Roadway with the Flow of Traffic: Suggests need 

for sidewalks 

4. Pedestrian Walking or Running in the Road Against the Flow of Traffic 

5. Diagonal Pedestrian Crossing 

6. Pedestrian in Center Lane 

7. Outside Crosswalk 

8. Right-Turning Conflicts 

9. Left-Turning Conflicts 

10. RTOR Conflicts 

11. Signal Change 

12. Pedestrian Violation 

13. Vehicle Violation 

 

Conflict Severity: 

Hesitation, Backup Movement, Running Movement, Near Miss, PDO, Injury, Fatality 

Routine, erratic, near miss, PDO, Injury, Fatality 

Used manual observers combined with these categorizations.  

Title: Large-scale automated proactive road safety analysis using video data16 

https://www.sciencedirect.com/science/article/pii/S0968090X15001485 

Summary: Analyzes differing roundabout locations in Canada. Multi-lane roundabouts are more 

likely to have larger amounts of vehicle conflicts depending on geometry.  

Video Processing: “Points are evenly spaced in time with a consistent equivalent to the inverse of 

the frame rate of the video (typically 15–30 frames per second), i.e. a measurement is done for 

each frame. The object (road user) itself is represented by a group of characteristic features spread 

over the object and moving in unison.” 

Three errors occur: Parallax error, pixel resolution, and tracking errors. Used trajectory clustering 

for vehicle paths along roundabout.  

Title: Ch 7. Development of a Method for Determining Crash Modification Factors17 

http://g92018.eos-intl.net/eLibSQL14_G92018_Documents/13-17.pdf 

 

Summary: 

https://www.sciencedirect.com/science/article/pii/S0968090X15001485
http://g92018.eos-intl.net/eLibSQL14_G92018_Documents/13-17.pdf


114 
 

 

“Time to collision is probably a much better surrogate than distance to collision, as it accounts for 

reaction time, velocity, and braking distance. However, estimating time to collision requires 

trajectory data for both agents, which is typically difficult to obtain in case-study analysis.” 

10th Street and Myrtle before and after implementation study. Average of one near miss / every 2 

hours. Will need vehicle trajectories to be able to count TTC.  

Title: Large-Scale Automated Analysis of Vehicle Interactions and Collisions18 

https://journals.sagepub.com/doi/abs/10.3141/2147-06 

Summary: Used extrapolation formula to dictate future position and crash probabilities. Only side 

and parallel interactions studied in detail. 

Has formulas to describe how probability of collision is calculated. Probability calculations 

become much more complex once multiple road users are considered. Used proximity cut off of 

1.7 m to represent an average vehicles width. Used a reference grid to calibrate the image.  

Title: Safety evaluation of right-turn smart channels using automated traffic conflict 

analysis19 

https://www.sciencedirect.com/science/article/pii/S0001457511003204 

Summary: Before and after safety evaluation of “smart” right turn channel. Smart channels lead 

to improved sight distances and are at a 70 degree angle. Found that the 70 degree angle channels 

reduced conflicts significantly between vehicles, pedestrians were not mentioned.  

Calibration and Processing: Used 6 extrinsic parameters and 2 intrinsic parameters to calibrate the 

view. Used an LCSS matching algorithm to generate the conflict events.  

Title: Traffic conflict standards for intersections20 

https://www.tandfonline.com/doi/pdf/10.1080/03081069908717634?needAccess=true 

Summary: Traffic conflicts at intersections between cars in both signalized and unsignalized 

intersections. Developed an intersection conflict index using average hourly conflict rate and 

average severe conflict rate as well as PEV which is the square root of the product of the hourly 

entering volumes in thousands 

Title: Automated Analysis of Road Safety with Video Data21 

https://journals.sagepub.com/doi/10.3141/2019-08 

Summary: Various methods used to get vehicle conflicts. Extrapolating vehicle trajectories is the 

one that is the most common. “Two approaches involve learning for traffic conflict detection: (a) 

supervised learning for interaction classification and (b) unsupervised learning of vehicle 

dynamics and movements for prediction. Uses feature based tracking and The algorithm relies on 

world coordinates through the estimation of the homography matrix.” 

“The clustered observations are therefore sequences of four-dimensional vectors, composed of the 

vehicle coordinates (x, y) and velocity (sx, sy) at each time step. The estimated size of the 

vehicles should also be useful, but it did not improve the results in the experiments. Since the 

https://journals.sagepub.com/doi/abs/10.3141/2147-06
https://www.sciencedirect.com/science/article/pii/S0001457511003204
https://www.tandfonline.com/doi/pdf/10.1080/03081069908717634?needAccess=true
https://journals.sagepub.com/doi/10.3141/2019-08
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trajectories obtained through the vehicle tracking algorithm are noisy, they are smoothed by using 

a moving average filter” 

“The detection process proceeds as follows: 

1. Vehicles are tracked; 

2. If two vehicles are close enough (threshold on their distance) and nearing each other (their 

distance decreases), they are considered to be in interaction; 

3. Each interacting vehicle trajectory is assigned to an HMM, say, A and B; and 

4. If the two HMMs A and B of both interacting trajectories were both memorized as conflicting 

both memorized as conflicting, a traffic conflict between these two vehicles is detected.” 

Title: Traffic monitoring and accident detection at intersections22 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=880968 

Summary: Discusses different vehicle tracking methodologies, uses a spatio-temporal Markov 

random field (MRF) for traffic images at intersections. Used a hidden Markov model to recognize 

events such as rear end bumper crashes, passing, and jamming.  

Title: Road User Collision Prediction Using Motion Patterns Applied to Surrogate Safety 

Analysis23 

http://n.saunier.free.fr/saunier/stock/st-aubin14motion-patterns.pdf 

Summary: Uses probability model and automatic processing to determine if a road user will be in 

a certain location at a certain time. Small step size is needed for precise predictions. Gives 

equations to calculate each. Demonstrates that using these predicted patterns it remains possible 

to be a better surrogate measure of safety than maintaining constant velocity. 

Title: PEDESTRIAN-VEHICLE CONFLICT ANALYSIS AT SIGNALIZED 

INTERSECTIONS USING MICRO-SIMULATION24 

http://vti.diva-portal.org/smash/get/diva2:926089/FULLTEXT01.pdf 

Summary: Uses Vissim to try and replication ped-vehicle conflicts. The study mentions the 

Surrogate Safety Assessment Model designed by the FHWA. Two different types of ped-vehicle 

conflicts. Vehicle yield to pedestrians, and pedestrians yield to vehicles. Vehicle-yield-ped 

conflict more dangerous. Vissim trajectory data was transferred to the SSAM to generate TTC 

and PET. Simulated crashes were slightly lower in some cases since peds have to obey signals 

100% of the time in Vissim. Max TTC found to be 2.7 seconds and max PET was found to be 8 s 

to generate the best results.  

Title: Performance Evaluation and Correction Functions for Automated Pedestrian and 

Bicycle Counting Technologies25 

https://ascelibrary.org/doi/10.1061/%28ASCE%29TE.1943-5436.0000828 

Summary: Evaluated different type of automatic devices to count peds and bikes.  

 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=880968
http://n.saunier.free.fr/saunier/stock/st-aubin14motion-patterns.pdf
http://vti.diva-portal.org/smash/get/diva2:926089/FULLTEXT01.pdf
https://ascelibrary.org/doi/10.1061/%28ASCE%29TE.1943-5436.0000828
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Title: Prediction of drivers and pedestrians' behaviors at signalized mid-block Danish offset 

crosswalks using Bayesian networks26 

https://www.sciencedirect.com/science/article/pii/S0022437518306595?via%3Dihub 

Summary: Estimates driver and pedestrian compliance rates at push-button intersections uses 

Bayesian Networks. Uses observational data from Denmark and Las Vegas. How likely are 

pedestrians to push the button given traffic conditions and how likely are cars to yield with 

flashing lights? Gave probabilities for differing flashing treatments, situations, and locations.  

Title: A methodology for precise camera calibration for data collection applications in 

urban traffic scenes27 

https://www.nrcresearchpress.com/doi/pdf/10.1139/cjce-2011-0456 

Summary: Repainting makes it difficult for points localization. Practical motivation section goes 

into detail about the issues. Existing techniques rely on parallel vehicle tracks as well which may 

be an inaccurate assumption. Existing camera calibration methods include using existing 

geometry, self-calibration with epipolar, and active vision calibration. Goes through their 

calibration model and has found more success when comparing to previous attempts when 

relating to real world distance. The intrinsic camera parameters optimized under calibration are 

focal length, skew angle, and radial lens distortion. The extrinsic parameters are the translation 

and rotation (six parameters) of the camera coordinate system from the world coordinate system. 

Title: Analysis of car-to-bicycle approach patterns for developing active safety devices28 

https://www.tandfonline.com/doi/full/10.1080/15389588.2015.1087641 

Yasuhiro Matsui, Shoko Oikawa & Masahito Hitosugi (2016) Analysis of car-to-bicycle approach 

patterns for developing active safety devices, Traffic Injury Prevention, 17:4, 434-

439, DOI: 10.1080/15389588.2015.1087641 

Summary: Same procedure as pedestrian study. Obstructed cyclists were more likely to have 

traffic conflicts. Very similar to other pedestrian study.  

Title: The extreme value theory approach to safety estimation29 

https://www.sciencedirect.com/science/article/pii/S0001457506000236 

Summary: Focused on straight right angle collisions and left turning collisions. Previous study 

concluded PET was the most promising indicator for safety implication. Used a method where 

risk was measured “with a time interval during which more than one pair of vehicles have an 

opportunity to collide.” Observance time was 8 hours and 18 selected sites. Listed the steps to 

apply their method:  

1. Crash proximity measured corresponding with the studied type of crash must be 

defined. 

 

2.  A valid crash proximity measure must be observable and possess a continuous 

characteristic that can represent crash-free operations as well as characterize a collision. 

3.  A definitive boundary between crash and non-crash must exist. 

 

https://www.sciencedirect.com/science/article/pii/S0022437518306595?via%3Dihub
https://www.nrcresearchpress.com/doi/pdf/10.1139/cjce-2011-0456
https://www.tandfonline.com/doi/full/10.1080/15389588.2015.1087641
https://doi.org/10.1080/15389588.2015.1087641
https://www.sciencedirect.com/science/article/pii/S0001457506000236
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4. The risk estimation method should include a bias-variance trade-off, a choice of r-

value, and identification of non-stationarity and associated covariates. 

 Overestimated crashes in intersections that had queuing into the intersection.  

*Vehicle speed is also an important factor 
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Appendix 5 – Technical Document for Conflict Analysis 

General Overview: 
 
The output of the multimon and reportgen provides the frame by frame coordinates of each 

unique object which the tracker identifies. The tracker outputs these bounding box coordinates in 

terms of (x,y) position as well as width and height. For each unique tracked object, the tracker 

also provides the object type (cyclist, pedestrian, vehicle), frame id, and unique object id. All 

these outputs are used to identify conflicts.  

 

 Workflow:  

 
The code for the conflict analysis pulls directly from the outputs of reportgen. After using 

pedmondetect to process a video with a specific Site ID, running reportgen provides filters out 

some false positives, such as a traffic light being labeled a pedestrian. The Conflict Analysis code 

works directly from the reportgen outputs and file structure. The user only needs to select the 

report directory and choose the cutoff points for the analysis. The Conflict Analysis Tool Manual 

in Appendix 1 shows the steps in detail.  
 

Point Filtering 

 
After inputting reportgen’s output csv files, the code uses a time based filter to see whether or not 

trajectories intersect. Essentially, each position for pedestrians and vehicles are points. Since the 

location are points, it is not a trivial problem to see whether or not the objects intersect with one 

another. Line segments could be created for all unique vehicles and pedestrians and intersected 

with the opposing class. This exercise, however, would provide thousands of potential “conflicts” 

without knowing whether or not they actually occur within a time window.  

 

To address the importance of time, a sliding time window is applied. Currently the window used 

is a 10 second window with timestep of 1 second. While using a 1 second timestep takes longer to 

process than using a larger timestep, it ensures that all conflicts are accounted for. Based on the 

existing literature, an interaction is considered a slight conflict between pedestrians and vehicles 

when the post-encroachment time (PET), the time difference when two objects are at a certain 

point, is between 3-5 s. A conflict exists when the PET is between 1-3 s. A severe conflict exists 

when the PET is lower than 1. The current applied 10 second window can therefore likely be 

smaller, but should still be slightly greater than 5 seconds.  

 

Intersection Assumptions 
 
For a time based filtering system, an intersection between two unique objects is believed to occur 

in the:  

 

Horizontal Direction when: 

 
A unique vehicle ID has at least two points within the minimum and maximum x trajectory with 

the given time window. AND a unique vehicle ID which has a y trajectory below the pedestrian y 

minimum AND which has a y trajectory above the maximum y during that time period.  

 



122 
 

The code first filters through and checks to see which unique vehicle IDs are within the time 

frame for ONE unique pedestrian and then checks to see whether the same unique vehicle ID has 

a point both above and below the pedestrian trajectories.  

 

Figure 94 below depicts a sample horizontal conflict the code will detect.  

 

Figure 94 - Sample horizontal conflict with pedestrian trajectory in blue and vehicle trajectory in orange 

The blue dots represent a possible pedestrian track, and the orange dots represent a possible 

vehicle track. While no points overlap, the vehicle track has points within the x-axis bound of the 

pedestrian, and also has points both above and below the min and max y values. The interpolation 

section will discuss how the post-encroachment time is calculated for conflicts.   

 

Vertical Direction  when: 

 
A unique vehicle ID has at least two points within the minimum and maximum y trajectory with 

the given time window AND a unique vehicle ID which has a x trajectory to the left of the 

pedestrian x minimum AND which has a x trajectory to the right of the maximum x during that 

time period. These type of conflicts usually occur when a pedestrian is walking along the 

roadway and crosses a driveway or intersection. Figure 95 below depicts a sample vertical 

conflict.  

 

 
Figure 95 - Sample vertical conflict with pedestrian trajectory in blue and vehicle trajectory in orange 
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Like with the sample horizontal conflict, the blue dots represent a sample pedestrian track, while 

the orange dots represent a sample vehicle track. Here, the vehicle track is outside the horizontal, 

and within the vertical bound bounds of the pedestrian track. 

 

Using a relatively large window, short time-step, and categorizing these conflict types finds all 

possible conflicts from the reportgen outputs.   

 

Step Through: 
 
The code first filters through and checks to see which unique vehicle IDs are within the time 

frame for one unique pedestrian, and then checks to see whether the same unique vehicle ID has 

an additional point that falls within either a horizontal or vertical conflict category. 

 

If a conflict does exist, the unique pedestrian ID, unique vehicle ID, x and y trajectories, specific 

time frames, and conflict category throughout the entire time window are put into a data frame 

called conflicts.  

 

A more readable data frame called conflict_table exists where the time window, pedestrian and 

vehicle ID which conflict, and intersection category. Once the code filters conflicts for the entire 

reportgen output, interpolation occurs for those conflicts. For a large dataset, the computational 

time is not insignificant. For a dataset of 4 cameras of 2.5 days, the processing time takes about 

18 hours. 

 

Interpolation: 
 
Now that all conflicts are accounted for, interpolation must happen to know when the paths 

intersect to calculate PET. While a Python package has a built in function which calculates the 

intersection of two linestrings, this package does not output the points which cause the 

intersection. While it outputs the points of the intersect, the points which are closest geometrically 

to the intersection point may or may not reflect the true intersection.  

 

To capture the accurate interpolated intersection, multiple nested loops are used. For each conflict 

in the conflict_table dataframe, the pedestrian and vehicle trajectories are obtained for the given 

time window.  

 

First, the pedestrian and vehicle trajectories are compared to see whether an pedestrian and 

vehicle intersect at the exact point. If both trajectories share the same x,y coordinates, then that is 

the intersection point and the PET time can be calculated by finding the time difference of the 

two points.  

 

For a vast majority of conlficts, however, no exact overlap between pedestrian and vehicle tracks 

occurs. To see where the pedestrian and vehicle lines intersect, each piecewise segment of the 

entire pedestrian track is checked against all piecewise vehicle segments of the entire vehicle 

track. If no intersection exists for that specific pedestrian segment, then the next pedestrian 

piecewise segment is checked against all vehicle segments. This loop continues until an 

intersection occurs between a pedestrian and vehicle segment*. 

 

*Even for a large dataset, this process occurs relatively quickly. For the 2.5 day, 4 camera 

dataset, the intersection checking process only took about 30 minutes.    
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Once an intersection occurs, the distance between the first point on both the pedestrian and 

vehicle lines to the intersection point is calculated. The time it takes to travel from the start to end 

of the respective pedestrian and vehicle segment is also calculated. The time to the intersection 

point is then calculated assuming a constant speed between the two points.  

 

Note: Speed between the two points is likely not constant, but currently it is the best way to 

calculate time differentials. The points are likely close enough in physical distance that the speed 

should not drastically change over that segment.  

 

The PET is then calculated by subtracting the pedestrian time from the vehicle time: 

 

PET = Vehicle Intersection Time – Pedestrian Intersection Time 

 

If the PET time is negative, that means the pedestrian passed behind the vehicle which is a less 

severe type of conflict. If the PET time is positive, that means the vehicle passed behind the 

pedestrian which is comparatively more severe type of conflict.  
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